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Fractional programming (FP) refers to the class of optimization involving ratio terms. The

traditional techniques for FP, i.e., the Charnes-Cooper method and Dinkelbach’s method, how-

ever can only be applied to the single-ratio problem (or the max-min-ratio problem). This

thesis aims to develop new techniques for FP to address a broader range of optimization prob-

lems consisting of multiple ratio terms, and to investigate their applications in communication

system design.

Toward this end, we propose a new technique named the quadratic transform to tackle

multiple ratios—which can even be nested in some nonlinear functions. We also propose a

Lagrangian dual transform in order to tackle the logarithmic ratio problems that are frequently

encountered in communication system design. As a further theoretical contribution, the classic

scalar FP is generalized to a multidimensional space wherein the ratios are of a matrix form.

Remarkably, both of the quadratic transform and the Lagrangian dual transform can be ex-

tended to higher dimensions. Moreover, we justify the proposed FP methods by connecting

them to the minorization-maximization (MM) theory.

On the application side of FP in communication system design, this thesis begins with

the continuous optimization of transmit powers and beamforming vectors in the signal-to-

interference-plus-noise ratio (SINR) terms. An interesting result about power control is that

FP leads to a fixed-point iteration with provable convergence whereas the existing algorithms

of the same type cannot guarantee convergence in general. For the discrete optimization, we

advocate a novel way of using FP, thereby reformulating the complicated integer programming

problem as a weighted bipartite matching problem. A critical aspect of this approach is that it

encompasses the weighted minimum mean square error (WMMSE) algorithm as a special case.

Finally, we demonstrate the role of matrix FP in optimizing the multi-data-stream transmission

for device-to-device (D2D) systems as well as in designing the nonorthogonal pilot sequences

for massive multiple-input multiple-out (MIMO).
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Chapter 1

Introduction

Fractional program is a family of optimization problems containing one or more ratio terms,

e.g., the single-ratio problem

maximize
x

A(x)

B(x)
(1.1a)

subject to x ∈ X (1.1b)

and the sum-of-ratios problem

maximize
x

n∑

i=1

Ai(x)

Bi(x)
(1.2a)

subject to x ∈ X , (1.2b)

where the numerator functions A(x) and Ai(x) are assumed to be nonnegative while the de-

nominator functions B(x) and Bi(x) are assumed to be strictly positive, along with a nonempty

and compact constraint set X composed of a finite number of inequalities.

The study of fractional programming (FP) was arguably initiated by John von Neumann in

his celebrated paper “A Model of General Economic Equilibrium” [1] first published in German

in 1937. It has since been considered extensively in broad areas in economics, management

science, information theory, optics, graph theory, and computer science [2–4]. The early works

of FP concentrate on the single-ratio problem in (1.1), typically under the concave-convex

condition (see Definition 1 in Section 2.1); the Charnes-Cooper method [5,6] and Dinkelbach’s

method [7] are the standard tools in this area. Others in the existing literature seek the global

optimum of the sum-of-ratios problem in (1.2) by means of branch-and-bound search [8–10].

Nevertheless, as pointed out in [9, 11], the solution to a sum-of-ratios problem with more than

twenty ratios is already beyond the reach of any known algorithm within reasonable time.

This thesis comprises two main parts. In the first part we examine the theoretical basis of

FP, aiming to improve upon the classic approach with two respects. First, we propose a new

optimization technique named the quadratic transform to address the multi-ratio fractional pro-

1



Chapter 1. Introduction 2

gram (including the sum-of-ratios problem as a special case). This is in contrast to the classic

techniques like the Charnes-Cooper method and Dinkelbach’s method that only can be applied

to the single-ratio or the max-min-ratio case. In addition, a novel Lagrangian dual transform is

proposed for the logarithmic ratio problem. We then demonstrate a deep connection between

the proposed methods and the minorization-maxization (MM) algorithm. Second, as a further

theoretical contribution to FP, we propose a multidimensional generalization whereby the nu-

merators, the denominators, and even the ratios between them can all be matrices. Remarkably,

it is shown that the quadratic transform and the Lagrangian dual transform can be extended

to higher dimensions.

Of equal importance are a variety of application cases of FP as shown in the second part

of the thesis, ranging from power control to beamforming, energy efficiency maximization, link

scheduling, spatial multiplexing, multi-data-stream device-to-device (D2D) transmission, and

pilot sequence design for massive multiple-input multiple-output (MIMO). These selected ex-

amples are meant to exhibit the diversity in using the FP technique for continuous optimization,

discrete optimization, and matrix optimization. It is worth highlighting the key role played by

the quadratic transform in these applications. Owing to its capability to deal with a broad

range of problems with multiple ratios, the quadratic transform stimulates new directions on

extensive issues in communication system design, most of which have never been viewed from

an FP perspective in the past research.

1.1 Motivation

What is the physical motivation of fractional term in communication systems? The present

thesis is committed to answering this question. Dinkelbach’s method has recently been applied

in [12–15] to solve the energy efficiency maximization problem for wireless communication

systems. FP is ideally suited for this problem scenario, because the objective function is already

in a ratio form. In contrast, the aim of this thesis is to extend the use of FP to address a

broader range of optimization problems in communication system design, particularly the ones

not expressed in a single-ratio form.

We focus on communication systems in which the data rate is computed as log(1+SINR)1,

where SINR represents the signal-to-interference-plus-noise ratio, i.e.,

SINR =
Desired Signal Strength

Interfering Signal Strength + Background Noise Level
. (1.3)

The prominent role played by SINR in communication systems makes FP an invaluable tool

for network design and optimization.

Although a vast array of works already exist for FP, them mostly specialize in the single-ratio

problem. For example, prior works on communication system design [12–15] that rely on classic

1For ease of notation, we use the natural logarithm in log(1 + SINR) throughout the thesis.
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FP techniques have had to confine their system models to the scenario involving only one single

ratio. Although multi-ratio problems are dealt with in [16], they are restricted to some specific

forms (e.g., the max-min problem). System-level communication network design, however,

often has to deal with multiple ratios, because the overall system performance is typically a

function of multiple fractional parameters (e.g., SINRs) from multiple interfering links. Solving

multiple-ratio FP is however NP-complete [17]. The state-of-the-art methods for finding the

globally optimal solution all require exponential running time (e.g., using branch-and-bound

search [8–10]). As to finding a stationary-point solution of the multiple-ratio problem, only

general-purpose techniques such as successive convex approximation are known.

This thesis addresses the multiple-ratio FP problem from a new viewpoint. Our core the-

oretical contribution is a novel technique called the quadratic transform that introduces some

suitable auxiliary variables, then recasts the original problem into a form amenable to iterative

optimization. Specifically, this new technique decouples the numerator and the denominator of

each ratio term, similar to the conventional Dinkelbach’s transform (but works with multiple

ratio as opposed to single ratio or max-min-ratio for the classic method). This ratio-decoupling

feature of the proposed quadratic transform is particularly suited for the coordinated resource

optimization across multiple cells in a wireless cellular network. For instance, the multicell

power spectrum optimization is a challenging nonconvex problem, because the transmit power

levels of the different links strongly impact each other through the interference terms in SINR.

Our proposed FP approach decouples the signal and the interference terms of the multiple links

through a set of auxiliary variables, thereby converting the original nonconvex problem into a

sequence of convex problems.

In addition to SINR, the thesis further shows that the minimum mean square error (MMSE),

a fundamental measure (e.g., for signal inference and for channel estimation) in digital commu-

nications, is closely related to the matrix FP we have developed. Three insights are provided

in this regard. First, it turns out that the well-known weighted mean square error (WMMSE)

algorithm amounts to a particular way of ratio decoupling by the quadratic transform. Second,

the MMSE of channel estimation for massive MIMO can be recognized as a matrix FP problem.

Third, we connect the MMSE of channel estimation to the weighted sum rate maximization

objective by using the Lagrangian dual transform.

1.2 Outline

This thesis offers a unifying FP framework that approaches diverse aspects of communication

system design. The succeeding chapters can be divided into two parts: Chapter 2 discusses the

theoretical basis of FP while Chapters 3 to 5 emphasize the application side.

Chapter 2 starts with the Charnes-Cooper method and Dinkelbach’s method. Although the

two classic techniques of FP can only deal with the single-ratio problem (or the max-min-ratio

problem), looking back at them is worthwhile in that it reveals a crucial idea behind these
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preexisting methods—ratio decoupling, which guides the construction of our new method. As

the main result of Chapter 2, a new technique named the quadratic transform is shown to

work for a much broader range of FP problems than the conventional methods, especially in

the presence of multiple ratio terms. While the prior studies of multi-ratio FP typically focus

on the sum-of-ratios problem, our work introduces a novel generalizations wherein the multiple

ratio terms can be nested in some particular functions, and shows that the quadratic transform

still works in this scenario.

In order to facilitate the optimization involving the rate expression log(1 + SINR), we de-

vise another new technique named the Lagrangian dual transform that is capable of moving

the fractional terms to the outside of logarithm, thus reformulating the logarithmic problem

as a sum-of-ratios problem. This technique is extensively used across Chapters 3 to 5 when

the logarithmic rate function is involved. Taken together, the quadratic transform and the

Lagrangian dual transform have a powerful synergism, especially when solving discrete opti-

mization problems.

At this stage of the thesis we further propose an extension of FP to a multidimensional

space, assuming that the numerators, the denominators, and even the ratios between them can

be of a matrix form. It is a remarkable result that the quadratic transform and the Lagrangian

dual transform both extends to this scenario. Moreover, we connect this matrix version of FP

to the MM theory—a popular framework for nonconvex optimization, and in return justify the

performance of our new techniques by taking insight from MM.

The above theoretical studies provide a new means of optimizing communication systems.

Chapter 3 concentrates on a series of continuous problems: Power control, beamforming, and

energy efficiency maximization. These examples illustrate that the quadratic transform enables

an efficient iterative optimization algorithm with provable convergence to a stationary point.

There are two results worth highlighting. First, the proposed closed-form method for power

control can be interpreted as a particular way of fixed-point iteration. As compared to the

existing fixed-point iteration methods in [18–20], a critical advantage of this FP approach lies in

that it guarantees convergence. Second, we propose a novel idea of treating the numerator itself

as an inner multiple-ratio problem nested in the outer single-ratio energy efficiency problem; this

double transformation enables the energy efficiency maximization across multiple wireless links

at a system level. Although using FP for energy efficiency problem is already considered in the

prior works [12–15], they rely on Dinkelbach’s method and thus have to limit the optimization

to the link-level.

In Chapter 4 we will start a new line of research that uses the quadratic transform and the

Lagrangian dual transform jointly to optimize the discrete variables in the SINR terms. Unlike

the continuous problems, discrete or mixed discrete-continuous problems normally cannot be

recast as convex problems. As opposed to the common heuristic of relaxing the discrete variables

[21], we propose an FP-based reformulation in a weighted bipartite matching form that can be

readily addressed by the standard combinatorial algorithms. We illustrate this approach by
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solving the important and challenging problem of uplink coordinated multi-cell user scheduling

in wireless cellular systems. Uplink scheduling is more challenging than downlink scheduling,

because uplink user scheduling decisions significantly affect the interference pattern in nearby

cells. A crucial insight is that the well-known WMMSE algorithm can also be recognized as a

particular way of ratio decoupling. But we show that our proposed way of ratio decoupling is

more suited for discrete optimization.

In Chapter 5, we shift away from the conventional scalar FP and enter the realm of matrix

FP. Note that some foregoing examples already involve multidimensional variables, e.g., joint

scheduling and beamforming, but they still assume that the ratio terms are all scalar-valued

(even though the numerators and the denominators are not necessarily scalars). We will consider

joint scheduling and beamforming for a D2D system with multiple data streams transmitted

on the same link, whereas the previous example in Chapter 4 assumes at most one data stream

per link. As a result, the SINR term of each link is now a matrix, so the matrix FP is

necessary. Furthermore, we recognize the MMSE channel estimation for massive MIMO as a

matrix fractional problem. The matrix quadratic transform can be applied, for example, to the

pilot sequence design. We also use the matrix Lagrangian dual transform to build a connection

between the MMSE channel estimation objective and the sum rate maximization objective.

1.3 Notation

Throughout the thesis, we use bold lower-case (or upper-case) letters to denote vectors (or

matrices), ‖ · ‖ the Euclidean norm, (̄·) the entry-wise conjugate of vector or matrix, (·)⊤
the transpose, (·)H the conjugate transpose, vec(·) the vectorization, tr(·) the trace, ⊗ the

Kronecker product, and (·) 1

2 (or sometimes
√· for ease of notation) the square root of a matrix.

Let E[·] be the expectation, R the set of real numbers, R+ the set of nonnegative numbers,

R++ the set of strictly positive numbers, Cm×n the set of m × n complex matrices, Hn×n
+ the

set of n × n positive semidefinite Hermitian matrices, Hn×n
++ the set of n × n positive definite

Hermitian matrices, diag(·) the diagonal matrix, j the imaginary unit, ℜ (or ℑ) the real (or

imaginary) part of a complex number, In the n×n identity matrix, and N (or CN ) a (complex)

Gaussian distribution. In addition, we use underline to denote a collection of variables, e.g.,

X = {X1,X2, . . . ,Xn}. For two random variables X and Y , we use X ⊥⊥ Y to denote that

they are independent.



Chapter 2

Fractional Programming Theory

This chapter defines different types of fractional program and introduces new mathematical

tools that form the building block of this thesis. We begin with the basic case—the single-ratio

problem. Two classic techniques, the Charnes-Cooper method and Dinkelbach’s method, are

reviewed in brief. Although these traditional approaches are typically restricted to the single-

ratio problem, they provide valuable inspiration in the development of the new technique. We

thereafter propose a novel method named the quadratic transform. It is shown that the quadrat-

ic transform is much more capable than the Charnes-Cooper method and Dinkelbach’s method

in dealing with the multi-ratio problems, e.g., the sum-of-ratios problem, the sum-of-functions-

of-ratio problem, and the function-of-multi-ratio problem. We also devise a Lagrangian dual

transform to address the logarithmic ratio problems that are frequently encountered in commu-

nication system design. Subsequently, we extend the above results to higher dimensions where

the fractional term is of a matrix form. These concepts and ideas are for the most part new in

the FP theory. The final achievement of this chapter is to demonstrate the connection between

FP and the MM algorithm.

2.1 Single-Ratio Problem

Considering a nonempty and compact constraint set X ⊆ C
d (thus composed of a finite number

of inequalities), a nonnegative function A: C
d 7→ R+, and a strictly positive function B:

C
d 7→ R++, where d ∈ N, the single-ratio (maximization) problem is

maximize
x

A(x)

B(x)
(2.1a)

subject to x ∈ X . (2.1b)

We then present two simple examples of the single-ratio problem as follows.

Example 1 (Linear Single-Ratio Problem). The problem in (2.1) is said to be a linear single-

ratio problem if it meets these two conditions: (i) A(x) and B(x) are both affine functions;

6
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(ii) X consists of a set of linear constraints. This nonconvex problem can be converted to an

equivalent linear programming (LP) problem [22] by using the Charnes-Cooper method [5, 6].

Example 2 (Rayleigh Quotient). The single-ratio problem (2.1) is said to be a Rayleigh quo-

tient problem if it can be written as

maximize
x

xHMx

xHx
(2.2a)

subject to x 6= 0, (2.2b)

where M � 0 is a positive semidefinite complex Hermitian matrix. The solution to (2.2) can

be optimally determined as x⋆ = v despite the nonconvexity, where v is the eigenvector of

M corresponding to the maximum eigenvalue. The well-known principal component analysis

(PCA) algorithm for data analysis builds on this result.

Furthermore, the following type of the single-ratio problem has been studied extensively in

the classic literature of FP.

Definition 1 (Concave-Convex Single-Ratio Problem). The single-ratio problem (2.1) is said

to be concave-convex if A(x) is a concave function while B(x) is a convex function. Note that

the concave-convex single-ratio problem is nonconvex in general.

2.1.1 Classic Methods

We state the Charnes-Cooper method (in 1962) and Dinkelbach’s method (in 1967) in the

following two theorems without proofs. They both aim to decouple the numerator function

A(x) and the denominator function B(x) for the single-ratio problem (2.1); the merit of doing

so is discussed at the end of this subsection.

Theorem 1 (Charnes-Cooper Method [5, 6]). The single-ratio problem (2.1) is equivalent to

maximize
z,y

zA
(y
z

)
(2.3a)

subject to zB
(y
z

)
= 1 (2.3b)

z ∈ Z (2.3c)

y ∈ Y (2.3d)

in the sense that the optimal solution x⋆ of (2.1) can be recovered by either

z =
1

B(x)
(2.4)

or

y =
x

B(x)
(2.5)
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given the optimal solution (z⋆,y⋆) of (2.3), where Z and Y are the constraint sets of z and y

according to (2.4) and (2.5), respectively, as x ∈ X .

Remark 1. The above method is first proposed by Charnes and Cooper [5] for the linear single-

ratio problem then extended by Schaible [6] to the concave-convex single-ratio problem. In

particular, the linear single-ratio FP in Example 1 can be recast to LP under the transformation

by the Charnes-Cooper method.

Theorem 2 (Dinkelbach’s Method [7]). Consider a sequence of optimization problems

maximize
x

A(x)− yB(x) (2.6a)

subject to x ∈ X (2.6b)

with the auxiliary variable y iteratively updated as

y(t+1) =
A(x(t))

B(x(t))
, (2.7)

where the superscript t is the iteration index. If x⋆ is the optimal solution of (2.6) at conver-

gence, then it is the optimal solution of (2.1) as well. Note that convergence is guaranteed by

alternatively updating y according to (2.7) and solving for x in (2.6), because y is nondecreasing

after each iteration. Actually, y converges to the optimum value of A(x)/B(x).

Observe that the Charnes-Cooper method decouples the denominator and the numerator

by moving the B(x) to the constraint (2.3b) while retaining A(x) in the objective function,

whereas Dinkelbach’s method decouples A(x) and B(x) directly in the objective function. In

comparison, the Charnes-Cooper method is more complicated in that: (i) additional constraints

are introduced; (ii) Z and Y need to be characterized, which may be numerically difficult.

But what is the benefit of ratio decoupling? Consider a concave-convex single-ratio problem

for example. Although the problem itself is nonconvex, the reformulated problem in (2.3)

by the Charnes-Cooper method or (2.6) by Dinkelbach’s method turns out to be convex under

the concave-convex condition, so the optimal solution can be efficiently determined after proper

transformation. Actually, the two classic techniques were devised exactly for the concave-convex

single-ratio problem. In addition to the above simple showcase, the thesis will demonstrate the

merits of ratio decoupling in many other problem scenarios that are neither single-ratio nor

concave-convex.

2.1.2 Quadratic Transform

Classic techniques for FP work well for single-ratio problems, but they cannot be easily gener-

alized to multiple-ratio FP. This is because although these classic transforms have the property

that the original FP and the transformed problem have the same optimal solution, the optimal

value of the objective function of the transformed problem is not necessarily the same as the
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original FP objective function value. Thus, when multiple ratios are involved, one cannot apply

the transform to each ratio individually.

The thesis proposes a new transform, which is motivated by Dinkelbach’s transform, but

with an added constraint that the value of the objective function must stay the same. It is

named the quadratic transform because it involves quadratic terms.

First, we formally state the properties that the desired transformed objective function is

expected to have, when reformulating the original FP objective function in (2.1):

• C1: (Decoupling) The new objective has the form g(x, y) = f(A(x))q1(y)+h(B(x))q2(y),

where y is an auxiliary variable.

• C2: (Equivalent Solution) Variable x⋆ maximizes A(x)/B(x) if and only if x⋆ together

with some y⋆ maximizes g(x, y).

• C3: (Equivalent Objective) If y⋆ = argmaxy g(x, y), then g(x, y⋆) = A(x)/B(x).

• C4: (Concavity) Function g(x, y) is concave over y for fixed x, i.e., ∂2g/∂y2 ≤ 0.

The above four conditions are all naturally motivated. C1 and C2 follow from the idea of the

classic FP transforms in order to decouple the optimization of A(x) and B(x) through y; C3

makes a stronger equivalence with the original problem as motivated by the desired application

for multiple-ratio problems; C4 allows for convex optimization over y for fixed x. Note that

C3 implies C2 but not vice versa. In fact, Dinkelbach’s transform satisfies C1, C2 and C4, but

does not satisfy C3. (Specifically, at the optimum, Dinkelbach’s transform has y⋆ = A(x)/B(x)

according to (2.7), therefore its g(x, y⋆) = 0.)

The new technique named the quadratic transform meets all these conditions C1-C4, as

stated in the following theorem.

Theorem 3 (Quadratic Transform). The quadratic transform

g(x, y) = 2y
√

A(x)− y2B(x) (2.8)

satisfies the conditions C1-C4. Further, if C4 is strengthened to require that ∂2g/∂y2 is inde-

pendent of y, then any g(x, y) that satisfies C1-C4 must be of the form

g(x, y) = 2(t1y + t2)
√

A(x)− (t1y + t2)
2B(x) (2.9)

for some t1 6= 0 and some t2 ∈ R. Thus, the proposed quadratic transform is without loss of

generality up to an affine transformation in y.

Proof. The equivalence between (2.1) and (2.8) can be readily verified. When x is fixed, observe

that g(x, y) is a concave function of y, so y can be optimally determined by setting ∂g/∂y to

zero, i.e., y⋆ =
√

A(x)/B(x). Substituting this y⋆ expression into g(x, y) recovers the original

objective function A(x)/B(x) and thus establishes the equivalence. The proof of the uniqueness

is relegated to Appendix A.
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The quadratic form of g is advocated here in order to let ∂2g/∂y2 be a constant given x,

thereby making the condition C4 easier to verify. But we remark that there may exist other

ways of constructing g.

2.2 Multi-Ratio Problems

We now proceed to the multi-ratio FP by considering n pairs of the nonnegative numerator

function Ai(x) ≥ 0 and the strictly positive denominator function Bi(x) > 0, i = 1, . . . , n. The

concave-convex condition is then extended accordingly.

Definition 2 (Concave-Convex Condition). A multi-ratio problem is said to be concave-convex

if each Ai(x) is a concave function while each Bi(x) is a convex function.

Four types of multi-ratio problem are discussed in what follows: Max-min-ratio problem,

sum-of-ratios problem, the sum-of-functions-of-ratio problem, and the function-of-multi-ratio

problem. The latter two types have not yet been studied in the prior works of FP. The goal of

this section is to show that the quadratic transform in Theorem 3 can be readily extended to

all the above multi-ratio problems, whereas the classic Dinkelbach’s method is limited to the

max-min-ratio scenario.

2.2.1 Max-Min-Ratio Problem

With a nonempty and compact constraint set X imposed on the variable x, the max-min-ratio

problem is

maximize
x

min
i

{
Ai(x)

Bi(x)

}
(2.10a)

subject to x ∈ X . (2.10b)

We remark that the above problem was introduced by von Neumann to model the economic

growth over time [1, 22].

Actually, the max-min-ratio problem is a rare case of the multi-ratio FP for which the classic

Dinkelbach’s method can be easily generalized, as stated in the following theorem.

Theorem 4 (Generalized Dinkelbach’s Method [16]). Consider a sequence of problems

maximize
x

min
i

{
Ai(x)− yBi(x)

}
(2.11a)

subject to x ∈ X (2.11b)

with the auxiliary variable y iteratively updated as

y(t+1) = min
i

{
Ai(x

(t))

Bi(x(t))

}
, (2.12)
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where the superscript t is the iteration index. If x⋆ is the optimal solution of (2.11) at con-

vergence, then it must be the optimal solution of the max-min-ratio problem in (2.10) as well.

Note that convergence is guaranteed by alternatively updating y according to (2.12) and solving

for x in (2.11), because y is nondecreasing after each iteration.

We further show that the new technique, the quadratic transform, is capable of decoupling

multiple ratios simultaneously for the max-min-ratio problem as well.

Corollary 1. The max-min-ratio problem (2.10) is equivalent to

maximize
x, y

min
i

{
2yi
√

Ai(x)− y2iBi(x)
}

(2.13a)

subject to x ∈ X (2.13b)

yi ∈ R, ∀i (2.13c)

in the sense that x⋆ is the optimal solution of (2.10) if and only if it is the optimal solution of

(2.13) with some y⋆.

Observe that Dinkelbach’s method requires only one auxiliary variable but the quadratic

transform introduces an auxiliary variable yi for each ratio term, so Dinkelbach’s method could

be preferable when dealing with the max-min-ratio problem.

Because the max-min-ratio problem is just to maximize the pointwise minimum of multiple

ratio terms, the solution of the single-ratio problem can be easily extended to this particular

structure. Nevertheless, when facing the subsequent multi-ratio problems, the classic Dinkel-

bach’s method no longer works and yet the quadratic transform is still applicable.

2.2.2 Sum-of-Ratios Problem

Again, assume a sequence of the numerator functions Ai(x) and the denominator functions

Bi(x), i = 1, . . . , n, along with a nonempty and compact constraint set X . We define the

sum-of-ratios problem as

maximize
x

n∑

i=1

Ai(x)

Bi(x)
(2.14a)

subject to x ∈ X . (2.14b)

The state-of-the-art methods for finding the globally optimal solution all require exponen-

tial running time (e.g., using branch-and-bound search [8–10]). In fact, as pointed out in [9]

and [11], the solution to a general FP problem consisting of more than twenty ratio terms is

already beyond the reach of known approaches within reasonable time. As to finding stationary-

point solution of the multiple-ratio problem, only general-purpose techniques such as successive

convex approximation are known. It is worth mentioning that combining multiple ratios into
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a single ratio (by finding a common denominator) does not make problem easier in general

because it typically cannot preserve the concave-convex condition.

The quadratic transform in Theorem 3 can be readily extended for the sum-of-ratios problem

due to C3 as shown below.

Corollary 2. The sum-of-ratios problem (2.14) is equivalent to

maximize
x, y

n∑

i=1

(
2yi
√
Ai(x)− y2iBi(x)

)
(2.15a)

subject to x ∈ X (2.15b)

yi ∈ R, ∀i (2.15c)

in the sense that x⋆ is the optimal solution of (2.14) if and only if it is the optimal solution of

(2.15) with some y⋆.

Condition C3 is critical for extending the idea of decoupled optimization of numerators and

denominators to the sum-of-ratios problem. As mentioned before, Dinkelbach’s transform does

not satisfy C3. Without the equivalence in the optimal objective function value, it is normally

difficult to extend Dinkelbach’s transform to the multiple-ratio case (except in special cases

such as the max-min problem [16]). A straightforward extension of Dinkelbach’s transform,

such as

maximize
x

n∑

i=1

(
Ai(x)− yiBi(x)

)
(2.16a)

subject to x ∈ X (2.16b)

with the auxiliary variable yi iteratively updated as the previous Ai/Bi, does not guarantee the

equivalence to (2.14).

Although not immediately recognized at the time the work of the quadratic transform was

first published [23], the above quadratic transform is akin to the earlier work of Benson [8,24],

as restated below.

Proposition 1 (Benson’s Transform [8, 24]). The sum-of-ratios problem (2.14) is equivalent

to

maximize
x,u,v

n∑

i=1

(
2ui
√

Ai(x)− viBi(x)
)

(2.17a)

subject to x ∈ X (2.17b)

u2i − vi ≤ 0, ∀i (2.17c)

in the sense that x⋆ is the optimal solution of (2.14) if and only if it is the optimal solution of

(2.17) with some (u⋆, v⋆).
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The transform (2.17) is proposed by Benson [8,24] in order to facilitate a branch-and-bound

search for the global optimum of the sum-of-ratios problem. It can be shown that at the

optimum, we must have u2m = vm, thus if we had made them equal a priori, this reduces to

the quadratic transform. Finally, we remark that the Benson’s transform does not apply to the

sum-of-ratios minimization problem.

2.2.3 Sum-of-Functions-of-Ratio Problem

We now assume that the ratio terms can be wrapped in some functions. With a sequence of

nondecreasing functions fi(·), the sum-of-functions-of-ratio problem is

maximize
x

n∑

i=1

fi

(
Ai(x)

Bi(x)

)
(2.18a)

subject to x ∈ X . (2.18b)

The above type of problem has not yet been considered in the existing works of FP. We are

motivated to study it by the capacity function log(1 + SINR), which is common in the com-

munication system but has never been viewed from an FP perspective. It turns out that the

quadratic transform still works for the sum-of-functions-of-ratio problem, as stated below.

Corollary 3. The sum-of-functions-of-ratio problem (2.18) is equivalent to

maximize
x, y

n∑

i=1

fi

(
2yi
√

Ai(x)− y2iBi(x)
)

(2.19a)

subject to x ∈ X (2.19b)

yi ∈ R, ∀i (2.19c)

in the sense that x⋆ is the optimal solution of (2.18) if and only if it is the optimal solution of

(2.19) with some y⋆.

Proof. We first rewrite the problem (2.18) as maxx, r
∑n

i=1 fi(ri) subject to x ∈ X and ri =

Ai(x)/Bi(x); because of the condition C3, variable ri can be replaced with maxy
(
2yi
√

Ai(x)−
y2iBi(x)

)
; further, since fi is nondecreasing, maxx

∑n
i=1 fi

(
maxy(2yi

√
Ai(x) − y2iBi(x))

)
can

be rewritten as in (2.19a) by merging maxx and maxy.

Finally, we remark that the proposed method does not work for the sum-of-ratios minimiza-

tion problem in general.
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Function-of-Multi-Ratio

Sum-of-Functions-of-Ratio Max-Min-Ratio

Sum-of-Ratios

Single-Ratio

Figure 2.1: Relations between different types of FP problems. We use ♣ → ♦ to indicate that
♦ is a special case of ♣.

2.2.4 Function-of-Multi-Ratio Problem

The sum-of-functions-of-ratio problem can be generalized further as

maximize
x

f

(
A1(x)

B1(x)
, . . . ,

An(x)

Bn(x)

)
(2.20a)

subject to x ∈ X , (2.20b)

where f : R+ 7→ R is a decreasing function in the sense that f(r1, . . . , rn) ≥ f(r′1, . . . , r
′
n) given

any (r1, . . . , rn) � (r′1, . . . , r
′
n). Observe that the function-of-multi-ratio problem encompasses

the sum-of-functions-ratio problem and the max-min-ratio problem as special cases. The re-

lations between the different FP problems are summarized in Fig. 2.1 displayed on the next

page.

The following corollary shows that the quadratic transform can be further extended to the

function-of-multi-ratio scenario.

Corollary 4. The function-of-multi-ratio problem (2.20) is equivalent to

maximize
x, y

f
(
2y1
√

A1(x)− y21B1(x), . . . , 2yn
√

An(x)− y2nBn(x)
)

(2.21a)

subject to x ∈ X (2.21b)

yi ∈ R, ∀i (2.21c)

in the sense that x⋆ is the optimal solution of (2.20) if and only if it is the optimal solution of

(2.21) with some y⋆. The proof is omitted since it resembles that of Corollary 3.

Observe that the above different forms of the quadratic transform are in essence of the same

structure. This observation leads us to a unifying algorithmic framework for multi-ratio FP as

stated in the next section.
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Algorithm 1: Iterative Optimization

1 Initialize the variable x to a feasible value;
2 repeat

3 Update y by (2.22);

4 Update x by solving the new problem obtained by
the quadratic transform, with the formerly updated
y substituted in;

5 until the value of the new objective function converges;

2.3 Iterative Optimization via Quadratic Transform

Equipped with the above different forms of quadratic transform, we now consider optimizing

the original variable x and the auxiliary variable y alternatively in terms of the new objective

function. In particular, when x is held fixed, y can be optimally determined by the condition

C3 in Section 2.1.2, that is

y⋆ =

√
A(x)

B(x)
or y⋆i =

√
Ai(x)

Bi(x)
. (2.22)

This iterative optimization is summarized in Algorithm 1 as displayed on the next page.

2.3.1 Optimality Analysis

We examine the performance of Algorithm 1 under the different problem settings.

Theorem 5 (Monotonic Increment). For the function-of-multi-ratio problem (hence including

the special cases like the sum-of-functions-of-ratio problem, the sum-of-ratios problem, the max-

min-ratio problem, and the single-ratio problem), the value of the original objective function is

monotonically nondecreasing after each iteration of Algorithm 1.

Proof. The above result can be obtained directly by using the condition C3. And we will see

this verified alternatively from an MM algorithm perspective in Section 2.6.

Theorem 6 (Stationary Point). If the FP problem further meets the concave-convex condition,

i.e., when every Ai(x) is concave and every Bi(x) is convex along with a convex constraint set

X , then Algorithm 1 consists of a sequence of convex optimizations in step 4 that lead to a

stationary point of (2.18).

Proof. The algorithm is basically a block coordinate ascent algorithm for the reformulated

problem (2.19), which is a convex optimization problem due to the concave-convex form of

(2.18), so it converges to a stationary point (x⋆, y⋆) of (2.19). Due to the equivalence in the

solution (namely the condition C2) and the equivalence in the objective value (namely the

condition C3), the first-order condition on x for (2.19) under the optimal y⋆ is the same as for
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the original problem (2.18), hence the algorithm also converges to a stationary point of (2.18).

We remark that the above result can be also proved by using an MM interpretation as shown

in Section 2.6.

In comparison to the gradient-based approach, the proposed iterative algorithm provides

efficient closed-form optimization and thus gets rid of the step size tuning. Regarding how far

the stationary point is from the global optimum, it is theoretically difficult to provide a bound

in general, but we mention that the existing analysis based on the MM theory [25] applies to

our method because of an MM interpretation as shown later in Section 2.6.

Theorem 7 (Global Optimality). For the single-ratio problem (2.1) and the max-min-ratio

(2.10) problem with differentiable A(x) and B(x), Algorithm 1 converges to the globally optimal

solution of the respective problems so long as the concave-convex condition is satisfied.

Proof. For the singel-ratio problem, the key is to verify that any stationary point must be the

local optimum in the special cases of single-ratio or max-min problems. This can be established

by showing that the concave-convex single-ratio FP problem is pseudo-convex (see Appendix

B). Further, since the problem has only one local optimum, it must be global optimum. This

fact has been proved in [26] for the case where A(x) and B(x) are differentiable and A(x)

is concave and B(x) is convex. Thus for single-ratio FP, Algorithm 1 converges to a global

optimum. Furthermore, by the result in [27] that any local optimum solution is also the global

optimum solution for the problem max mini{fi} given that each fi is a pseudoconcave function,

the global optimality is established in the max-min-ratio case.

Fig. 2.2 shows an example of a single-ratio concave-convex FP problem whose unique local

optimum is the global optimum. We note that this property of converging to the globally

optimal solution holds also for the Charnes-Cooper method and Dinkelbach’s method. This is

true despite that the original problem is not necessarily convex.

2.3.2 Rate of Convergence

We analyze the convergence speed of Algorithm 1 as compared to the classic transforms. Note

that if the single-ratio problem is concave-convex, solving the problem by Dinkelbach’s trans-

form amounts to a sequence of convex optimizations (2.6) over x with the auxiliary variable y

iteratively updated by (2.7). It is shown in [26] that the iteration by Dinkelbach’s transform

converges at a superlinear rate, i.e.,

lim
t→∞

|y⋆ − yt+1|
|y⋆ − yt|

= 0 (2.23)

where subscript t is the index of iteration, and y⋆ is the auxiliary variable value at the conver-

gence. For ease of comparison, we evaluate the convergence of Algorithm 1 for the single-ratio
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Figure 2.2: Maximizing f(x1, x2) = x1/((x1 − 1)2 + (x2 − 2)2 + 1) over x1 ≥ 0 and x2 ≥ 0 is a
single-ratio concave-convex FP problem. Although f(x1, x2) is not concave, its local optimum
is also the global optimum.

problem as well. As compared to Dinkelbach’s transform, the quadratic transform (i.e., Algo-

rithm 1) can be considerably slower. The following example shows that the convergence rate

of Algorithm 1 can be strictly slower than superlinear.

Example 3 (Quadratic Transform is Slower than Dinkelbach’s Method). Consider an example

of the single-ratio concave-convex problem

maximize
x

x

x2 + 1
(2.24a)

subject to x ≥ 0. (2.24b)

The quadratic transform reformulates its objective function as

g(x, y) = 2y
√
x− y2(x2 + 1). (2.25)

Introduce a subscript t to denote the iteration index. When x is set to some xt, the auxiliary

variable y is optimally updated according to (2.22), i.e.,

yt+1 =

√
xt

x2t + 1
. (2.26)
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After y is updated to yt+1, the optimal x is

xt+1 = (2yt+1)
− 2

3 . (2.27)

Combined together, the above two equations yield an iterative update of y:

yt+1 =
(2yt)

− 1

3

(2yt)
− 4

3 + 1
. (2.28)

With y initialized to 0.1 (so y0 = 0.1), it can be shown that yt+1 in (2.28) converges to 1
2 in a

nondecreasing fashion. We then have

lim
t→∞

|y⋆ − yt+1|
|y⋆ − yt|

= lim
t→∞

y⋆ − yt+1

y⋆ − yt
(2.29a)

= lim
y→ 1

2

1
1
2 − y

(
1

2
− (2y)−

1

3

(2y)−
4

3 + 1

)
(2.29b)

=
1

3
. (2.29c)

Thus, Algorithm 1 in this example converges more slowly than the iterative optimization based

on Dinkelbach’s transform. The convergence of these two methods is illustrated in Fig. 2.3.

Moreover, we will see an MM interpretation of our FP methods in Section 2.5, so it is worth

mentioning that the spectral radius

ρ = 1−min
u6=0

uH · ∇2f(x) · u
uH · ∇2g(x|x̂∞) · u (2.30)

has been proposed as a metric reflecting the rate of convergence for the MM algorithm [28]. In

principle, ρ reflects how well the surrogate function g(x|x̂) approximates the original objective

function f(x) in terms of the second moment—smaller ρ indicates tighter approximation and

thus faster convergence. However, this type of analysis has limited value in our problem case

because: (i) it requires the updating function of x to be differentiable whereas our problem

involves discrete variables; (ii) computing ρ entails solving a difficult nonconvex problem; (iii)

it only characterizes the local convergence in the proximity of x∞.

It is stressed that although the conventional Dinkelbach’s transform can result in a faster

convergence rate than the proposed quadratic transform, the use of the former technique is

restricted to the single-ratio problem whereas the latter is capable of dealing with multiple

ratios. Further, for multiple-ratio FP problems where global convergence is not guaranteed,

slower convergence can sometime be advantageous as it allows the algorithm to more fully

explore the solution space.



Chapter 2. Fractional Programming Theory 19

0 2 4 6 8 10 12 14 16 18
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration number

D
is

ta
nc

e 
fr

om
 o

pt
im

um

 

 

Quadratic
Dinkelbach

Figure 2.3: When applied to the single-ratio problem (2.24), Dinkelbach’s method converges
faster than the quadratic transform.

2.4 Lagrangian Dual Transform

The quadratic transform as stated in the former section is the core FP technique used for

treating the continuous problems. When it comes to the discrete problems of user scheduling,

we need to introduce a new FP technique named the Lagrangian dual transform. Its main role

is to reformulate the log(1 + SINR) maximization problem as a weighted bipartite matching

problem in conjunction with the quadratic transform, typically applied to the scenario where the

numerator and denominator of SINR are both a linear combination of the optimizing variable

x.

Optimization problem for communication system design often involves data rates expressed

as logarithmic functions of SINR, i.e., log(1 + SINR). We propose two different approaches

for applying FP to such problems. In the direct FP, the quadratic transform is immediately

applied to the log-function of the ratio to decouple the numerator and denominator, while

in the closed-form FP, a Lagrangian dual transform is first applied to take the ratio out of

the logarithm. For continuous optimization problems, the two approaches give comparable

performance. However, for discrete scheduling problems involving log(1 + SINR), the second

approach of using Lagrangian dual transform becomes indispensable.

We develop the Lagrangian dual transform technique that accomplishes the task of “mov-

ing” SINR to the outside of logarithm. This technique plays a crucial role in addressing the
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discrete scheduling problems, because it allows a subsequent quadratic transform to express all

optimization variables in linear terms. This section gives a detailed derivation of the Lagrangian

dual transform technique with a constructive proof of the main result.

The target problem is a weighted sum-of-logarithms maximization:

maximize
x

n∑

i=1

wi log

(
1 +

Ai(x)

Bi(x)

)
(2.31a)

subject to x ∈ X , (2.31b)

where wi’s are nonnegative weights, Ai(x)’s are nonnegative functions and Bi(x)’s are positive

functions for all i, and X is a nonempty constraint set. The above formulation is often used to

model the weighted sum rate maximization problem of a communication network. The ratio

Ai(x)/Bi(x) can be physically interpreted as the SINR term. The problem (2.31) has no known

convex reformulation. Further, the constraint represented by X is not necessarily compact, i.e.,

the variable x may be discrete or mixed discrete-continuous.

The main result is the following Lagrangian dual transform capable of converting (2.31) to

a sum-of-ratios form.

Theorem 8 (Lagrangian Dual Transform). The weighted sum-of-logarithms problem (2.31) is

equivalent to

maximize
x, γ

fr(x, γ) (2.32a)

subject to x ∈ X , (2.32b)

where the new objective function fr is defined as

fr(x, γ) =

n∑

i=1

wi log(1 + γi)−
n∑

i=1

wiγi +

n∑

i=1

wi(1 + γi)Ai(x)

Ai(x) +Bi(x)
︸ ︷︷ ︸

Sum-of-ratio term

. (2.33)

The two problems are equivalent in the sense that x is the solution to (2.31) if and only if it is

the solution to (2.32) with some γ⋆, and the optimal objective values of these two problems are

also equal.

Proof. Observe that fr is a concave differentiable function over γ when x is held fixed, so γ can

be optimally determined by setting each ∂fr/∂γi to zero, i.e., γ⋆i = Ai(x)/Bi(x). Substituting

this γ⋆i back in fr recovers the weighted sum-of-logarithms objective function in (2.31a) exactly.

The equivalence is therefore established.

To provide insight on how the above transform is obtained, we revisit the weighted sum-

of-logarithms problem (2.31) from a Lagrangian dual perspective, and provide an alternative

constructive proof of Theorem 8.
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First, by introducing a new variable γi to replace each ratio term inside the logarithm, (2.31)

can be rewritten as

maximize
x, γ

n∑

i=1

wi log (1 + γi) (2.34a)

subject to x ∈ X (2.34b)

γi ≤
Ai(x)

Bi(x)
, ∀i. (2.34c)

The above optimization can be thought of as an outer optimization over x and an inner opti-

mization over γi with fixed x. The inner optimization given x is formulated as

maximize
γ

n∑

i=1

wi log(1 + γi) (2.35a)

subject to γi ≤
Ai(x)

Bi(x)
, ∀i. (2.35b)

The solution to this inner optimization is obviously that γi should satisfy (2.35b) with equality.

But, let’s express the problem in a different way. Note that (2.35) is a convex optimization in

γ, so the strong duality [22] holds. Introduce the dual variable λi for each inequality constraint

in (2.35b) and form the Lagrangian function

L(γ, λ) =

n∑

i=1

wi log(1 + γi)−
n∑

i=1

λi

(
γi −

Ai(x)

Bi(x)

)
. (2.36)

Due to strong duality, the optimization (2.35) is equivalent to the dual problem

minimize
λ�0

maximize
γ

L(γ, λ), (2.37)

where � is the pointwise greater-than-or-equal-to symbol.

Let (γ⋆, λ⋆) be the saddle point of the above. It must satisfy the first-order condition

∂L/∂γi = 0:

λ⋆
i =

wi

1 + γ⋆i
. (2.38)

But from the trivial solution to the optimization problem (2.35), we already know that γ⋆i =

Ai(x)/Bi(x), so

λ⋆
i =

wiBi(x)

Ai(x) +Bi(x)
. (2.39)

Note that λ⋆
i ≥ 0 is automatically satisfied here. Using (5.33) in (2.37), problem (2.35) can

then be reformulated as

maximize
γ

L(γ, λ⋆). (2.40)

Furthermore, combining with the outer maximization over x ∈ X and after some algebra, we
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find (2.40) to be exactly the same as the maximization of (2.33) in Theorem 8.

We remark that the Lagrangian dual transform can also be interpreted as constructing a

surrogate function from an MM perspective as specified in Section 2.6. Furthermore, if ratio is

nested in some other functions, then we need to change the surrogate function accordingly.

2.5 Matrix Fractional Programming

Generalization of the conventional scalar FP to the multidimensional space constitutes another

major contribution of this chapter. Two cases are examined: (i) the numerator is vector and

the denominator is matrix, so the ratio is still scalar; (ii) the numerator and the denominator

are both matrices, so their ratio is also a matrix.

2.5.1 Vector Numerators & Matrix Denominators

We first consider FP assuming that the numerators are vectors and the denominators are

matrices. This class of FP arises in dealing with multi-antenna communication systems. Given

a sequence of function ai(x) ∈ C
d and function Bi(x) ∈ H

d×d
++ , for i = 1, . . . , n, along with a

nonempty and compact constraint set X , where d ∈ N, a sum-of-ratios problem with vector

numerators and matrix denominators is is

maximize
x

n∑

i=1

aHi (x)B−1
i (x)ai(x) (2.41a)

subject to x ∈ X . (2.41b)

The extension of the quadratic transform for this multidimensional case is stated below.

Theorem 9 (Vector Quadratic Transform). The vector-numerator-and-matrix-denominator

single-ratio problem (2.41) is equivalent to

maximize
x,y

n∑

i=1

(
2ℜ
{
yH
i ai(x)

}
− yH

i Bi(x)yi

)
(2.42a)

subject to x ∈ X (2.42b)

yi ∈ C
d, ∀i. (2.42c)

Proof. Recognize each term in the summation of (2.42a) as yH
i ai + aHi yi − yH

i Biyi and then

further rewrite it as aHi B−1
i ai − (yi −B−1

i ai)
HBi(yi −B−1

i ai) by completing the square. It is

easy to see that the optimal solution of (2.42) is y⋆
i = B−1

i (x)ai(x) and the optimal value of

(2.42a) equals to aHi B−1
i ai exactly. The equivalence to (2.41) is therefore established.

The above transformation can be extended to the sum-of-functions-of-ratio problem and

the function-of-multi-ratio problem in Section 2.2. Theorem 9 focuses on the sum-of-ratios
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case because that is the main type of matrix FP problem we will face when dealing with

spatial multiplexing in wireless networks. Moreover, the Lagrangian dual transform can also be

extended for the vector-numerator-and-matrix-denominator scenario, as stated in the following

theorem.

Theorem 10 (Vector Lagrangian Dual Transform). Given a sequence of nonnegative weights

wi ≥ 0, vector-valued functions ai(x) ∈ C
d, and matrix-valued function Bi(x) ∈ H

d×d
++ , for

i = 1, . . . , n, along with a nonempty and compact constraint set X , where d ∈ N, a weighted

sum logarithm FP problem

maximize
x

n∑

i=1

wi log
(
1 + aHi (x)B−1

i (x)ai(x)
)

(2.43a)

subject to x ∈ X (2.43b)

is equivalent to

maximize
x, γ

fr(x, γ) (2.44a)

subject to x ∈ X , (2.44b)

where the new objective function fr is

fr(x, γ) =
n∑

i=1

wi log(1+γi)−
n∑

i=1

wiγi+
n∑

i=1

wi(1+γi)a
H
i (x)

(
ai(x)a

H
i (x)+Bi(x)

)−1
ai(x). (2.45)

Proof. Since fr is analytic in the complex plane and also fr is concave over γ for fixed x,

we take its complex derivative and solve each ∂fr/∂γi = 0. The optimal γ⋆i is easily seen as

aHi (x)B−1
i (x)ai(x). Substituting this γ⋆i back in fr recovers the weighted sum-of-logarithms

objective function in (2.43a) exactly, thus establishing the equivalence.

We have assumed that the numerator and the denominator can be matrices but the ratio

between them is still scalar-valued. What follows is a further extension to account for the

matrix-form fractional terms.

2.5.2 Matrix Numerators & Matrix Denominators

The definition of ratio can be naturally generalized to the matrix case. Recall that
√
A ∈ C

d×d

is a square root of matrix A ∈ H
d×d
+ if

√
A
√
A

H
= A. (Note that the square root of matrix

may not be unique.) For any pair of A ∈ H
d×d
+ and B ∈ H

d×d
++ , let

√
A be a square root of

A, then
√
A

H
B−1

√
A is said to be a matrix ratio between A and B. The FP transforms of

Theorem 3 and Theorem 8 can now be generalized accordingly. We state these new results in

the following.
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Theorem 11 (Matrix Quadratic Transform). Given a sequence of numerator functions Ai(x) ∈
H

d×d
+ , denominator functions Bi(x) ∈ H

d×d
++ , and nondecreasing matrix functions fi(Z) ∈ R in

the sense that fi(Z
′) ≥ fi(Z) if Z′ � Z, for i = 1, . . . , n, along with a nonempty and compact

constraint set X , where d ∈ N, the matrix-numerator-and-matrix-denominator sum-of-ratios

problem

maximize
x

n∑

i=1

fi
(√

A
H

i (x)B−1
i (x)

√
Ai(x)

)
(2.46a)

subject to x ∈ X (2.46b)

is equivalent to

maximize
x,Y

f̃q(x,Y) (2.47a)

subject to x ∈ X (2.47b)

Yi ∈ C
d×d, ∀i, (2.47c)

where the new objective function is

f̃q(x,Y) =
n∑

i=1

fi

(
2ℜ{

√
A

H

i (x)Yi} −YH
i Bi(x)Yi

)
. (2.48)

Note that the above transformation has implicitly required that the argument of fi(·) in (2.48)

is a positive semidefinite matrix.

Proof. To show that (2.46) is equivalent to (2.47), we first optimize over Yi for fixed x in (2.47).

This can be done for each term in the summation in f̃q separately. Since fi(·) is assumed to be

monotonic, we only need to optimize its argument, which is a quadratic function of Yi. This

optimization has a closed-form solution by completing the square, i.e.,

2ℜ{
√
A

H

i (x)Yi} −YH
i Bi(x)Yi =

√
A

H

i (x)Yi +YH
i

√
Ai(x)−YH

i Bi(x)Yi

=
√
A

H

i (x)B−1
i (x)

√
Ai(x)−∆H

i Bi(x)∆i, (2.49)

where ∆i = Yi −B−1
i (x)

√
Ai(x). We then obtain the optimal Y⋆

i = B−1
i (x)

√
Ai(x). Substi-

tuting this Y⋆
i in f̃q recovers the original problem.

We also give the matrix version of the Lagrangian dual transform in the following theorem.

Theorem 12 (Matrix Lagrangian Dual Transform). Given a nonempty constraint set X as well

as a sequence of the numerator functions Ai(x) ∈ H
d×d
+ , the denominator functions Bi(x) ∈

H
d×d
++ , and the nonnegative weights wi ≥ 0, for i = 1, . . . , n, where d ∈ N, the sum-of-weighted-
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logarithmic-matrix-ratios problem

maximize
x

n∑

i=1

wi log
∣∣∣Id +

√
A

H

i (x)B−1
i (x)

√
Ai(x)

∣∣∣ (2.50a)

subject to x ∈ X (2.50b)

is equivalent to

maximize
x,Γ

fr(x,Γ) (2.51a)

subject to x ∈ X (2.51b)

Γi ∈ H
d×d
+ , ∀i, (2.51c)

where the new objective function is

fr(x,Γ) =

n∑

i=1

wi

(
log |Id + Γi| − tr(Γi) + tr

(
(Id + Γi)

√
A

H

i (x)
(
Ai(x) +Bi(x)

)−1√
Ai(x)

))
.

(2.52)

Proof. Using the Woodbury matrix identity

(
D+UCV

)−1
= D−1 −D−1U

(
C−1 +VD−1U

)−1
VD−1, (2.53)

we can rewrite (2.52) as

fr(x,Γ) =

n∑

i=1

wi

(
log |Id + Γi|+ n− tr

(
(Id +Γi)

(
Id +

√
A

H

i (x)B−1
i (x)

√
Ai(x)

)−1
))

. (2.54)

We then consider the optimization of the above new form of fr. Note that the optimization

over Γi can be done separately for each term of the summation. Since each of the terms is

concave over Γi when x is fixed, the optimal Γi can be determined by setting ∂fr/∂Γi to zero,

i.e.,

(Id + Γi)
−1 −

(
Id +

√
A

H

i (x)B−1
i (x)

√
Ai(x)

)−1
= 0. (2.55)

Note that the derivative ∂fr/∂Γi exists in this case because fr is a spectral function [29]. Thus,

we obtain the optimal Γ⋆
i =

√
A

H

i (x)B−1
i (x)

√
Ai(x). Substituting this Γ⋆

i in (2.54) recovers

the original problem, thereby establishing the theorem.

Observe that the proposed matrix quadratic transform of Theorem 11 can be applied to

decouple the ratio terms of fr in (2.52) to further transform the matrix FP, as stated in the

corollary below.
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Corollary 5. The sum-of-weighted-logarithmic-matrix-ratios problem (2.50) is equivalent to

maximize
x,Γ,Y

fq(x,Γ,Y) (2.56a)

subject to x ∈ X (2.56b)

Γi ∈ H
d×d
+ , ∀i (2.56c)

Yi ∈ C
d×d, ∀i, (2.56d)

where the new objective function is

fq(x,Γ,Y) =
n∑

i=1

(
wi log |Id + Γi| −witr

(
Γi

)
+ tr

(
(Id + Γi) ·

(
2
√
wi

√
A

H

i (x)Yi −YH
i

(
Ai(x) +Bi(x)

)
Yi

)))
. (2.57)

Note that ℜ{·} can be dropped for the term
√
A

H

i (x)Yi because of trace.

Proof. Treating fi(Z) = tr
(
(Id+Γi)Z

)
as the nondecreasing function,

√
wi

√
Ai(x) as the square

root of the numerator, and Ai(x) +Bi(x) as the denominator, we apply the matrix quadratic

transform of Theorem 11 to the last term of fr in (2.52) to obtain the above reformulation.

Note that the new objective function fq is an affine function of each of the square-root

terms of the numerator
√
wi and

√
Ai(x) and the denominator term Bi(x), while keeping all

other terms fixed. This facilitates algorithm design for solving the matrix FP problem. We also

remark that there are also other ways of applying the matrix quadratic transform to fr in (2.52)

by choosing different matrix ratios and functions fi(·). The different ways of decomposition are

discussed in detail in Section 4.4.

The former vector FP can be used to deal with the MIMO communication where each

link has at most one data stream. To reap the full benefit of MIMO, each link needs to

carry multiple data streams. In this case, the matrix FP of Theorem 11 is indispensable.

These multidimensional FP techniques are typically applied to the log(1 + SINR)-type rate

maximization problem. In particular, if the numerator and denominator of SINR are both

affine functions of the target variables (e.g., beamforming vectors), then the variables can be

optimized in closed form in the new problem by completing the square.

2.6 Connection to MM Algorithm

A critical theoretical insight is that the FP methods proposed above can be recast in the MM

framework. We focus on the matrix FP since it is a generalization of the scalar version.
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First, we give a brief introduction to MM. Consider a general optimization problem:

maximize
x

f(x) (2.58a)

subject to x ∈ X , (2.58b)

where f(x) is not assumed to be concave. Because of the nonconvexity, it is not always easy to

solve the problem directly. The core idea behind the MM algorithm is to successively solve a

sequence of well-chosen approximations of the original problem [30, 31]. Specifically, at point

x̂ ∈ X , the MM algorithm approximates problem (2.58) as

maximize
x

g(x|x̂) (2.59a)

subject to x ∈ X , (2.59b)

where g(x|x̂) is referred to as the surrogate function and is defined by these two conditions:

• M1: g(x|x̂) ≤ f(x) for any x ∈ X ;

• M2: g(x̂|x̂) = f(x̂).

The surrogate function ĝ(x|x̂) takes a form such that x can be optimized easily, conventionally

constructed as a concave function of x in the continuous optimization case. However, the choice

of ĝ(x|x̂) as proposed in this thesis is not always a concave function, especially when dealing

with the discrete optimization.

The MM algorithm updates x̂ iteratively as follows:

x̂t+1 = argmax
x∈X

g(x|x̂t), (2.60)

where subscript t is the iteration index. Note that the function value of f(x̂) is nondecreasing

after each iteration because

f(x̂t+1)
(a)

≥ g(x̂t+1|x̂t)
(b)

≥ g(x̂t|x̂t)
(c)
= f(x̂t), (2.61)

where (a) follows by M1, (b) follows by the optimality of x̂t+1 in (2.60), and (c) follows by M2.

This is illustrated in Fig. 2.4 on the next page.

The following proposition gives a convergence analysis of the MM algorithm.

Proposition 2. Let x̂t be the solution produced by the MM update (2.60) after t iterations.

The function value f(x̂t) converges in a nondecreasing fashion in t. Further, the variable

x̂t converges to a stationary point solution to the original optimization problem (2.58) if the

following three conditions are satisfied: (i) f(x) is continuous over a convex closed set X ; (ii)

g(x|x̂) is continuous in (x, x̂); (iii) f(x) and g(x|x̂) are differentiable with respect to x given

x̂.
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x̂t+1 x̂t x̂t−1

g(x|x̂t)

g(x|x̂t−1)

f(x)

Figure 2.4: The iterative optimization by the MM algorithm. Observe that f(x̂) is monotoni-
cally nondecreasing after each iteration.

Proof. The non-decreasing convergence of f(x̂) is already verified in (2.61). Further, combining

the above condition (iii) with the conditions M1 and M2, we obtain that f(x) and g(x|x̂) have
the same gradient with respect to x at x = x̂. This result, along with the above conditions (i)

and (ii), guarantees that x̂t converges to a stationary point solution to the original optimization

problem (2.58) according to [30]. We remark that the proof can be adapted to the case where

x is a complex variable; the argument is similar to that of [32].

The MM algorithm is a framework rather than an algorithmic prescription, because the

algorithm depends on the specific choice of the surrogate function. If f(·) is twice differentiable,
its second order Taylor expansion is often the first candidate to check to see whether it is suitable

as a surrogate function. For more general functions, many of the ingenious ways of constructing

a surrogate function have been documented in [31].

The main point of this section is that the proposed matrix FP transforms can be interpreted

in the MM framework as a way of constructing surrogate functions of the original problems, as

stated below.

Theorem 13. Consider the matrix quadratic transform in Theorem 11, if we consider the

optimal Y⋆
i as a function of x̂ and substitute it into f̃q in (2.48), then the new objective function

f̃q(x,Y(x̂)), where

Yi(x̂) = B−1
i (x̂)

√
Ai(x̂) (2.62)

is a surrogate function of the objective function of the optimization problem (2.46).

Proof. Use fI(x) to denote the objective function in (2.46a). SubstituteYi(x̂) = B−1
i (x̂)

√
Ai(x̂)

back in f̃q. We aim to show that g(x|x̂) = f̃q(x,Y(x̂)) is a surrogate function of fI(x).



Chapter 2. Fractional Programming Theory 29

As already shown in the proof of Theorem 11, Y(x) is the optimum solution for the maxi-

mization of f̃q(x,Y) over Y when x is fixed. So, f̃q(x,Y(x̂)) ≤ f̃q(x,Y(x)),∀x̂,x. Further, it

can be seen that f̃q(x,Y(x)) = fI(x) for any x.

Thus, for each fixed x̂, we have f̃q(x,Y(x̂)) ≤ fI(x), ∀x, and f̃q(x̂,Y(x̂)) = fI(x̂), thus

verifying the conditions M1 and M2 for f̃q(x,Y(x̂)) to be a surrogate function of fI(x).

Theorem 14. Consider the matrix Lagrangian dual transform in Theorem 12, if we consider

the optimal Γ⋆
i as a function of x̂ and substitute it into fr in (2.52), then the new objective

function fr(x,Γ(x̂)), where

Γi(x̂) =
√
A

H

i (x̂)B−1
i (x̂)

√
Ai(x̂) (2.63)

is a surrogate function of the objective function of the optimization problem (2.50).

Proof. We use fII(x) to denote the objective function in (2.50a). We further substitute Γi(x̂) =√
A

H

i (x̂)B−1
i (x̂)

√
Ai(x̂) back in fr, aiming to show that g(x|x̂) = fr(x,Γ(x̂)) is a surrogate

function of fII(x).

As shown in the proof of Theorem 12, Γ(x) is the optimal solution to maximizing fr(x,Γ)

over Γ when x is fixed, so fr(x,Γ(x̂)) ≤ fr(x,Γ(x)),∀x, x̂. Also, it holds true that fr(x̂,Γ(x̂)) =
fII(x̂), ∀x̂. Combining the above results, we see that the conditions M1 and M2 are satisfied,

thus fr(x,Γ(x̂)) is a surrogate function of fII(x).

Corollary 6. Consider the transform in Corollary 5, if we consider the optimal Γ⋆
i and the

optimal Y⋆
i as two functions of x̂, and substitute them into into fq, then the new objective

function fq(x,Γ(x̂),Y(x̂)), where

Γi(x̂) =
√
A

H

i (x̂)B−1
i (x̂)

√
Ai(x̂) (2.64)

and

Yi(x̂) =
(
Ai(x̂) +Bi(x̂)

)−1(√
wi

√
Ai(x̂)

)
, (2.65)

is a surrogate function of the objective function of the optimization problem (2.50).

Proof. Again, let fII(x) be the objective function in (2.50a). Introduce two new variables x̂ and
ˆ̂x, and substitute Γi(x̂) =

√
A

H

i (x̂)B−1
i (x̂)

√
Ai(x̂) andYi(ˆ̂x) = (Ai(ˆ̂x)+Bi(ˆ̂x))

−1(
√
wi

√
Ai(ˆ̂x))

back in fq and fr. Let g1(x|ˆ̂x, x̂) = fq(x,Γ(x̂),Y(ˆ̂x)), and g2(x|x̂) = fr(x,Γ(x̂)).

According to Theorem 14, g2(x|x̂) is a surrogate function of fII(x) in the sense that

g2(x|x̂) ≤ fII(x) and g2(x̂|x̂) = fII(x̂),∀x, x̂. According to Theorem 13, g1(x|ˆ̂x, x̂) is a sur-

rogate function with respect to fr in the sense that g1(x|ˆ̂x, x̂) ≤ fr(x,Γ(x̂)) and g1(ˆ̂x|ˆ̂x, x̂) =
fr(ˆ̂x,Γ(x̂)),∀x, x̂, ˆ̂x.

Combining these results and fixing ˆ̂x = x̂, we obtain g1(x|x̂, x̂) ≤ fr(x,Γ(x̂)) = g2(x|x̂) ≤
fII(x),∀x and g1(x̂|x̂, x̂) = fr(x̂,Γ(x̂)) = g2(x̂|x̂) = fII(x̂), thereby verifying the conditions M1

and M2 for fq(x,Γ(x̂),Y(x̂)) to be a surrogate function of fII(x).
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The above connection between FP and MM provides a theoretical basis to a sequence of new

algorithms based on the quadratic transform and the Lagrangian dual transform as proposed

in the rest of the thesis. In principle, the basic properties that have been discovered about MM

can be carried over to our FP approach automatically. A direct benefit we will see is to simplify

the convergence proof of Proposition 5 in Section 3.1.3 by using the MM interpretation, which

would have been much more cumbersome [33] otherwise.

2.7 Summary

This chapter focuses on the theoretical aspect of FP. The main contributions are four fold. First,

we introduce the sum-of-functions-of-ratio problem and the function-of-multi-ratio problem as

two new types of multi-ratio problems. Second, we propose a new ratio-decoupling technique

named the quadratic transform that works for a broader range of FP problems than the classic

methods, especially when the problem consists of multiple ratio terms; we also propose a La-

grangian dual transform to address the logarithmic FP problem. Third, we put forward a new

idea of generalizing FP to a multidimensional space, namely matrix FP. Last, the proposed

techniques are shown to be closely connected to the MM algorithm.



Chapter 3

Continuous Optimization Problems

This chapter characterizes the role of FP in dealing with the continuous problems of communica-

tion system design, including power control, beamforming, and energy efficiency maximization.

We aim to show that the proposed quadratic transform can greatly facilitate the optimization

involving multiple ratios by recasting the original nonconvex problem into a sequence of convex

problems. This ratio-decoupling transformation gives rise to an efficient iterative optimization

algorithm that guarantees convergence to a stationary point. We further show that the pro-

posed algorithm for power control can be recognized as a fixed-point iteration. Differing from

the existing power control algorithms of the same type, our fixed-point iteration guarantees

convergence to a stationary point regardless of channels.

3.1 Power Control

The proposed approach is applied to the optimization of transmit powers pursuing a weight-

ed sum-rate maximization across a single-input single-output (SISO) wireless cellular network,

which is a notorious challenging problem. We propose two methods: (i) A direct approach

that applies the quadratic transform directly to SINR, then updates the power variables iter-

atively via a sequence of convex optimizations; (ii) a more sophisticated approach that uses

the quadratic transform in conjunction with the Lagrangian dual transform to derive closed-

form iterative updates. We further interpret the second approach as a fixed-point iteration and

compare it with the existing fixed-point iteration methods for power control.

3.1.1 Problem Formulation

The first example is the classic power control problem for a downlink SISO cellular network

with a set of single-antenna base stations (BSs) B, each serving a single-antenna user. Let

hi,j ∈ C be the downlink channel from BS j to user i; let σ2 be the power level of additive

white Gaussian noise (AWGN). Introduce variable pi for each BS i as its transmit power level,

31
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constrained by a power budget of Pmax. The downlink data rate of user i is computed as

Ri = log

(
1 +

|hi,i|2pi∑
j 6=i |hi,j |2pj + σ2

)
. (3.1)

We consider the maximization of a weighted sum rate objective function

fo(p) =
∑

i∈B

wiRi, (3.2)

where wi accounts for the priority of the ith BS-user downlink. The power control problem is

formulated as

maximize
p

fo(p) (3.3a)

subject to 0 ≤ pi ≤ Pmax, ∀i ∈ B. (3.3b)

This problem is numerically difficult due to its nonconvexity. Indeed, the problem can be

solved globally by using a polyblock approximation approach [34], but not in polynomial time.

Moreover, for the case where all the SINRs are sufficiently high so that log(1 + SINR) can be

approximated as log(SINR), the problem can be globally solved via geometric programming

(GP) [35]. Moreover, the structure of the interference functions is investigated in [36, 37] for

solving the power control problem. The goal of this section is to find at least a stationary point

of the power control problem in an efficient manner.

3.1.2 Direct Approach

Although the power control problem is not in a direct ratio form, the main components of its

objective function, the SINR terms, are fractional. Because each SINR term resides inside the

logarithm function, which is nondecreasing and concave, the condition of Theorem 6 is satisfied

in this problem. Specifically, after applying the quadratic transform to each SINR term, we

arrive at the following reformulation:

maximize
p, y

fDIR
q (p, y) (3.4a)

subject to 0 ≤ pi ≤ Pmax, ∀i ∈ B (3.4b)

yi ∈ R, ∀i ∈ B, (3.4c)

where y refers to the collection {yi}i∈B. The new objective function fDIR
q is

fDIR
q (p, y) =

∑

i∈B

wi log

(
1 + 2yi

√
|hi,i|2pi − y2i

(
∑

j 6=i

|hi,j |2pj + σ2

))
(3.5)

with an auxiliary variable yi introduced by the quadratic transform for each downlink i.
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Algorithm 2: Direct FP for Power Control

1 Initialize p to a feasible value;

2 repeat

3 Update y by (3.6);

4 Update p by solving the convex optimization
problem (3.4) over p for fixed y;

5 until the value of function fDIR
q in (3.5) converges;

Following Algorithm 1, we optimize y and p in an iterative fashion. The optimal y for fixed

p is

y⋆i =

√
|hi,i|2pi∑

j 6=i |hi,j|2pj + σ2
. (3.6)

Then, finding the optimal p for fixed y is a convex problem. This power control method is

summarized in Algorithm 2.

By Theorem 6 in Section 2.3.1, Algorithm 2 guarantees a convergence to a stationary point

of problem (3.3). We remark that Algorithm 2 can be easily extended to the multiple-band

system, where the frequency band is partitioned into T sub-bands, and the user rate is computed

as

Ri =
T∑

t=1

1

T
log

(
1 +

|hti,i|2pti∑
j 6=i |hti,j |2ptj + σ2

)
. (3.7)

Here, hti,j and ptj represent the channel and the transmit power level in the tth sub-band,

respectively. The power constraint (3.3b) now becomes

T∑

t=1

pti ≤ Pmax, ∀i ∈ B (3.8)

and

pti ≥ 0, ∀i ∈ B, t = 1, . . . , T. (3.9)

To adapt Algorithm 2 to this multiple-band scenario, we just need to introduce an auxiliary

variable yti for each (i, t) pair and include a sum-power constraint across the sub-bands for each

transmitter, so step 3 remains closed-form update and step 4 remains convex optimization. We

then show that the direct FP method can be extended for a general utility function.

Proposition 3 (Power Control for General Utility Maximization). Given a nondecreasing

concave utility function Ui of rate Ri for each user i, e.g., the log-utility function, the sum

utility maximization problem

maximize
p

∑

i∈B

Ui(Ri) (3.10a)

subject to 0 ≤ pi ≤ Pmax, ∀i ∈ B (3.10b)
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is equivalent to

maximize
p, y

∑

i∈B

Ui(Qi) (3.11a)

subject to 0 ≤ pi ≤ Pmax, ∀i ∈ B (3.11b)

yi ∈ R, ∀i ∈ B, (3.11c)

where

Qi = log

(
1 + 2yi|hi,i|

√
pi − y2i

∑

j 6=i

|hi,j |2pj − y2i σ
2

)
. (3.12)

The new problem as stated above can be solved (to a stationary point) as follows. When p

is fixed, variable y is optimally determined by (3.6); when y is fixed, optimizing p in (3.11) is

a convex problem.

Furthermore, we may encounter a SINR cap in practice, e.g., at 60 dB, so the data rate can

no longer increase when SINR exceeds 60 dB. In this case, we simply impose a ceiling constraint

SINRcap on the ratio term, and the new problem becomes

maximize
p, y

∑

i∈B

Ui

(
min{Qi,SINRcap}

)
(3.13a)

subject to 0 ≤ pi ≤ Pmax, ∀i ∈ B (3.13b)

yi ∈ R, ∀i ∈ B. (3.13c)

Note that the convexity of the above new problem is preserved because the ceiling function is

concave.

3.1.3 Closed-Form Approach

This subsection shows a different use of FP for solving the power control problem. This new

approach is based on a Lagrangian dual reformulation of the power control problem as stated

below. This leads to an algorithm in which each iteration is performed in closed form, rather

than having to solve a convex optimization problem numerically, which is often more desirable

than the direct FP approach introduced in the previous subsection.

Proposition 4. By virtue of the Lagrangian dual transform in Theorem 8, the original power

control problem (3.3) is reformulated as

maximize
p, γ

fCF
r (p, γ) (3.14a)

subject to 0 ≤ pi ≤ Pmax, ∀i ∈ B, (3.14b)
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Algorithm 3: Closed-Form FP for Power Control

1 Initialize p and γ feasible values;

2 repeat

3 Update y by (3.19);

4 Update γ by (3.16);

5 Update p by (3.18);

6 until the value of function fCF
q in (3.17) converges;

where the new objective function is

fCF
r (p, γ) =

∑

i∈B

wi log (1 + γi)−
∑

i∈B

wiγi +
∑

i∈B

wi(1 + γi)|hi,i|2pi∑
j∈B |hi,j |2pj + σ2

. (3.15)

We propose an iterative algorithm based on the above reformulation. When pi is held fixed,

the optimal γi is obtained by setting ∂fCF
r /∂γi to zero, i.e.,

γ⋆i =
|hi,i|2pi∑

j 6=i |hi,j |2pj + σ2
. (3.16)

Note that the optimal γi is equal to the downlink SINR of BS i. When γi is held fixed, only

the last term of fCF
r , which has a sum-of-ratio form, is involved in the optimization of pi. By

the quadratic transform, we further recast fCF
r to

fCF
q (p, γ, y) =

∑

i∈B

2yi

√
wi(1 + γi)|hi,i|2pi −

∑

i∈B

y2i

(
∑

j∈B

|hi,j |2pj + σ2

)
+ const(γ), (3.17)

where const(γ) refers to a constant term when γ is fixed. For maximizing fCF
q iteratively over

pi and yi, we find closed-form update equations as

p⋆i = min

{
Pmax,

y2iwi(1 + γi)|hi,i|2(∑
j∈B y2j |hj,i|2

)2

}
(3.18)

and

y⋆i =

√
wi(1 + γi)|hi,i|2pi∑
j∈B |hi,j|2pj + σ2

. (3.19)

These updating steps amount to an iterative optimization as summarized in Algorithm 3.

Unlike the direct FP approach, the above algorithm is not a conventional block coordinate

descent (BCD), because the optimizing objective is not fixed, i.e., γi is optimally updated

for fCF
r while yi and pi are optimally updated for fCF

q . Nonetheless, its convergence to the

stationary point can still be established by Theorem 6 in Section 2.3.1.

Proposition 5. The weighted sum rate is nondecreasing after each iteration of Algorithm 3,
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so the objective function of the optimization problem is guaranteed to converge. Furthermore,

at convergence, the solution p is a stationary point of the original problem.

Proof. We prove convergence based on the MM interpretation of the FP transforms as shown

in Section 2.6. The Step 3 and Step 4 of the algorithm construct the surrogate functions as

defined in Theorem 14 and Theorem 13 in Section 2.6. Step 5 of Algorithm 3 performs the

maximization step of MM, so the weighted sum rate must be nondecreasing after Step 5, by

(2.61). Since the optimization objective is nondecreasing and is bounded above, Algorithm 3

must converge in objective value.

The weighted sum rate is a differentiable function over p. Further, the conditions of Theorem

6 in Section 2.3.1 are satisfied. So, at convergence, the solution of p given by Algorithm 3 must

be a stationary point according to the proof of Theorem 6.

We remark that proving the convergence of Algorithm 3 without the MM interpretation

would have been much more cumbersome. We remark also that Algorithms 2 and 3 can be

initialized with some simple but reasonable heuristic, e.g., setting the initial powers to the half

of the maximum powers. In our simulations, however, in order to guarantee fair comparisons, we

use random starting points then average out the results. Moreover, we set some small constant

δ > 0 and use the convergence criterion |f (t)
q − f

(t−1)
q | < δ where t is the iteration index.

We remark also that user i may get stuck at the off state if pi is close to zero, namely

premature turning-off. To resolve this issue, a heuristic method is to set a positive lower bound

on pi at the early stage of iterations. In Chapter 4 we will revisit this premature turning-off

issue in the discrete optimization case.

3.1.4 Connection to Fixed-Point Iteration

This subsection illustrates that Algorithm 3 can be interpreted as a fixed-point iteration on the

first-order condition of the power optimization problem. Attaining a stationary-point solution

of the power control problem is equivalent to finding a solution to the first-order condition for

(3.3), i.e.,
∂fo(p)

∂pi
= 0, (3.20)

which can be written as

1

pi
·
wiγi(p)

1 + γi(p)︸ ︷︷ ︸
T1i(p)

−
∑

j 6=i

wjγ
2
i (p)|hj,i|2

(1 + γi(p))|hj,j |2pj︸ ︷︷ ︸
T2i(p)

= 0 (3.21)

where γi(p) represents the SINR function of p in cell i as defined in (3.16). To find a set of

powers that satisfy the above condition, one strategy [18–20] is to isolate pi at one side of the

equation—this automatically results in an update equation for power, which, if converging,

would achieve at least a stationary point of the power control problem.
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However, it is in general not easy to decide which part of the left-hand side of (3.20) should

be fixed in order to ensure the convergence of fixed-point iteration. For instance, [19] proposes

to fix T1i and T2i as shown in (3.21) and arrives at the following fixed-point method for power

control

p
(t+1)
i = min

{
Pmax,

T1i(p
(t))

T2i(p(t))

}
, (3.22)

where the superscript t is the iteration index. However, this fixed-point iteration does not

necessarily converge. (In fact, [19] proves that this iteration is guaranteed to converge when

the resulting SINR values are all sufficiently high.)

With γ⋆ and y⋆ substituted in (3.18), the update equation (3.18) can also be thought of as

a fixed-point iteration of the first-order condition for power control, exactly like (3.21) except

that different components T̃1i and T̃2i, shown below, are fixed

1√
pi

·
wiγi(p)√

pi︸ ︷︷ ︸
T̃1i(p)

−
∑

j

wjγ
2
i (p)|hj,i|2

(1 + γi(p))|hj,j |2pj︸ ︷︷ ︸
T̃2i(p)

= 0. (3.23)

In this case, the transmit power variable pi update becomes

p
(t+1)
i = min



Pmax,

(
T̃1i(p

(t))

T̃2i(p(t))

)2


 , (3.24)

which, along with an additional projection step onto the constraint set, can be seen to be (3.18)

after some algebra. Thus, the power control part of Algorithm 3 is just a fixed-point iteration,

but with a crucial advantage that convergence is guaranteed, in contrast to the updates proposed

in [18–20].

Finally, it is worth highlighting that the role of the auxiliary variables (γ, y) is to fix a set

of p in the fixed-point iteration with provable convergence.

3.1.5 Numerical Results

We now evaluate the performance of FP for power control on a downlink cellular network

consisting of seven wrapped-around hexagonal cells. Within each cell, the BS is located at the

center and the downlink users are randomly placed. The BS-to-BS distance is set to be 0.8 km.

The maximum transmit power level at the BS side is set to be -27 dBm/Hz, and the AWGN

power level is set to be −170 dBm/Hz. A 10 MHz frequency band is fully reused across all

the cells. The downlink distance-dependent path-loss is simulated by 128.1 + 37.6 log10(d) +

τ in dB, where d represents the BS-to-user distance in km, and τ is a zero-mean Gaussian

random variable with 8 dB standard deviation for the shadowing effect. We consider sum rate

maximization by setting all the weights to 1.

The proposed FP approaches are compared to several benchmarks: first, direct optimiza-
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tion based on a modified Newton’s method [38], which deals with the power constraints via

the nearest-point projection (the full Newton’s method is too computationally complex), and

second, an approach based on a modified version of GP called SCALE [39]. The version of

SCALE implemented here involves solving a GP in every iteration.

Fig. 3.1 shows the performance of various power control algorithms in flat-fading channels.

The closed-form FP takes the largest number of iterations to converge, but its computation

per iteration is the lowest because of the closed-form updates in every iteration. In contrast,

SCALE and direct FP both require solving a convex problem in each iteration. The closed-form

FP also has lower complexity than Newton’s method on per-iteration basis. In our simulation

experience, the closed-form FP is the fastest.

Fig. 3.2 simulates a frequency selective fading scenario, in which the bandwidth is divided

into 4 subbands; one downlink user is scheduled per tone. The resulting power control differs

from the flat-fading case because of the sum power constraint across the subbands, i.e.,
∑

n p
n
i ≤

Pmax where pni denotes the power level in tone n at BS i. In this case, Newton’s method has to

apply a heuristic nearest-point projection in order to satisfy the sum power constraint, but this

no longer guarantees a stationary-point solution. As can be seen in the simulation, Newton’s

method now has much worse performance.

To conclude, the FP based approaches are competitive with the state-of-the-art algorithms

in power control, with the closed-form FP having lower overall complexity due to its lower

per-iteration cost. Note that the converged values of different algorithms may differ depending

on the starting point, as only stationary-point convergence is guaranteed in all cases.
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Figure 3.1: Power control in flat-fading channels.
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Figure 3.2: Power control in frequency-selective fading channels.
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3.2 Beamforming

Chapter 2 has introduced a multidimensional version of FP with vector numerators and matrix

denominators (albeit the ratio terms remain scalar-valued). This section shows that this new

technique is ideally suited for the beamforming design in the spatial multiplexing wireless

networks.

3.2.1 Problem Formulation

The second example is an application of multidimensional FP to the beamforming optimization

problem. Consider a downlink MIMO cellular network with a set of BSs B. Assume that each

BS has M antennas and each user terminal has N antennas; then at most M downlink data

streams are supported per cell via spatial multiplexing. Let Him,j ∈ C
N×M be the downlink

channel from BS j to the user who is scheduled in the mth data stream at BS i. Let σ2 be the

AWGN power level. Introduce variable vim ∈ C
M as the downlink transmit beamformer at BS

i for its m-th data stream. The data rate of stream (i,m), Rim, is computed as

Rim(v) = log

(
1 + vH

imHH
im,i

(
σ2IN +

∑

(j,n)6=(i,m)

Him,jvjnv
H
jnH

H
im,j

)−1

Him,ivim

)
. (3.25)

Let weight wim be the priority of user scheduled in the m-th data stream at BS i. We seek

to maximize the weighted sum rate over the beamforming vectors:

maximize
v

∑

i,m

wimRim(v) (3.26a)

subject to

M∑

m=1

‖vim‖22 ≤ Pmax, ∀i ∈ B, (3.26b)

where we use Pmax to denote the transmit power constraint at the BS side. This is a challenging

nonconvex problem with vector variables.

3.2.2 Direct Approach

Similar to the power control case, the direct FP approach applies the vector quadratic transform

of Theorem 9 in Section 9 to each SINR term. This leads to a new objective function fDIR
q as

fDIR
q (v,y) =

∑

(i,m)

wim log

(
1 + 2ℜ

{
yH
imHim,ivim

}

− yH
im

(
σ2IN +

∑

(j,n)6=(i,m)

Him,jvjnv
H
jnH

H
im,j

)
yim

)
, (3.27)
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Algorithm 4: Direct FP for Beamforming

1 Initialize v to a feasible value;
2 repeat

3 Update y by (3.29);

4 Update v by solving the convex problem (3.28) over
v for fixed y;

5 until the value of function fDIR
q in (3.27) converges;

where an auxiliary variable yim ∈ C
N is introduced for each data stream (i,m). The optimiza-

tion problem (3.26) can now be recast to

maximize
v,y

fDIR
q (v,y) (3.28a)

subject to

M∑

m=1

‖vim‖22 ≤ Pmax, ∀i ∈ B (3.28b)

yim ∈ C
N , ∀(i,m). (3.28c)

Decoupled by the multidimensional quadratic transform, the SINR term is converted to a

concave function of v. Since the outer logarithmic function is nondecreasing and concave, the

optimization problem (3.28) is a convex problem of v when the auxiliary variable y is held

fixed.

We follow Algorithm 1 in Section 2.3 to maximize fDIR
q over v and y iteratively. Each yim

for fixed v is optimally determined as

y⋆
im =

(
σ2IN +

∑

(j,n)6=(i,m)

Him,jvjnv
H
jnH

H
im,j

)−1

Him,ivim. (3.29)

For fixed y, the optimal vim can be obtained by convex optimization. The resulting algorithm,

stated as Algorithm 4, has a provable convergence to a stationary point due to Theorem 6 in

Section 2.3.1. This algorithm requires solving a convex problem numerically in every iteration.

In the next section, we illustrate another use of FP that yields a closed-form optimization in

every iteration.

3.2.3 Closed-Form Approach

As for power control, a closed-form FP approach can also be developed for the beamforming

problem. The main idea is the same as in power control, but in a multidimensional vector space.

The sum logarithm problem is first reformulated in a sum-of-ratios form using a Lagrangian

dual transform; the quadratic transform is subsequently applied to the ratios. After applying

the vector Lagrangian dual transform in Theorem 10 in Section 2.5.1 to (3.26), we arrive at a
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sum-of-ratios reformulation with fCF
r (v, γ) as

fCF
r (v, γ) =

∑

(i,m)

wim

(
log(1 + γim)− γim + (1 + γim)vH

imHH
im,i ·

(
σ2IN +

∑

(j,n)

Him,jvjnv
H
jnH

H
im,j

)−1

Him,ivim

)
. (3.30)

When v is fixed, the optimal γim can be found by setting ∂fCF
r /∂γim to zero with respect

to each (i,m) pair, that is

γ⋆im = vH
imHH

im,i

(
σ2IN +

∑

(j,n)6=(i,m)

Him,jvjnv
H
jnH

H
im,j

)−1

Him,ivim. (3.31)

The multidimensional quadratic transform in Theorem 9 in Section 2.5.1 can then be readily

applied to further recast fCF
r to

fCF
q (v, γ,y) =

∑

(i,m)

(
2
√

wim(1 + γim) ℜ{vH
imHH

im,iyim}−

yH
im

(
σ2IN +

∑

(j,n)

Him,jvjnv
H
jnH

H
im,j

)
yim

)
+ const(γ), (3.32)

where const(γ) is a constant term when γ is fixed.

The above fCF
q reformulation is obtained by treating

√
wim(1 + γim)Him,ivim as the nu-

merator vector and also treating
(
σ2IN +

∑
(j,n)Him,jvjnv

H
jnH

H
im,j

)
as the denominator matrix

in Theorem 9. The weighted sum-rate maximization problem (3.26) is then reformulated as

maximize
v,γ,y

fCF
q (v, γ,y) (3.33a)

subject to
M∑

m=1

‖vim‖22 ≤ Pmax, ∀i ∈ B (3.33b)

γim ∈ R, ∀(i,m) (3.33c)

yim ∈ C
N , ∀(i,m). (3.33d)

The merit of reformulating fCF
r as fCF

q is to facilitate iterative optimization over vim. With

the other variables fixed, the optimal yim can be found by solving ∂fCF
q /∂yim = 0, i.e.,

y⋆
im =

(
σ2IN +

∑

(j,n)

Him,jvjnv
H
jnH

H
im,j

)−1√
wim(1 + γim)Him,ivim. (3.34)
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Algorithm 5: Closed-Form FP for Beamforming

1 Initialize v and γ to feasible values;

2 repeat

3 Update y by (3.34);

4 Update γ by (3.31);

5 Update v by (3.35);

6 until the value of function fCF
q in (3.32) converges;

Likewise, when the other variables are fixed, the optimal v is

v⋆
im =

(
ηiIM +

∑

(j,n)

HH
jn,iyjny

H
jnHjn,i

)−1√
wim(1 + γim)HH

im,iyim, (3.35)

where ηi is a dual variable introduced for the power constraint, optimally determined by (due

to complementary slackness)

η⋆i = inf

{
ηi ≥ 0 :

M∑

m=1

‖vim(ηi)‖22 ≤ Pmax

}
. (3.36)

Note that the optimal ηi in (3.36) can be determined efficiently by bisection search. Algorithm

5 summarizes the above steps.

We remark that the proposed FP framework in this particular beamforming case, i.e.,

Algorithm 5, is equivalent to the well-known WMMSE algorithm [40,41]. This can be verified

by substituting γ and y in the updating formula of v. We will explore this connection further in

Section 4.4. Like Algorithm 3, Algorithm 5 is not a BCD but its convergence can be established,

e.g., by the MM interpretation from Section 2.6.

3.2.4 Numerical Results

The simulation model assumes the same setting as in Section 3.1.5 for network topology, AWGN,

distance-dependent pathloss, max transmit power, except that two users are randomly located

within each cell and that the BSs and the users are now equipped with 2 antennas each.

Consider Rayleigh fading for the channel coefficients. We pursue a maximization of sum rate

in the network by setting all the weights wim = 1.

Fig. 3.3 compares the different FP approaches. It shows that direct FP converges in fewer

iterations than the closed-form FP (which is equivalent to the WMMSE algorithm [41]), e.g., the

former achieves a sum rate of 470 Mbps within 10 iterations but the latter needs 25 iterations.

However, counting just the number of iterations is misleading. The closed-form FP is in fact

much more efficient than direct FP on a per-iteration basis, because closed-form FP updates

all variables in closed form, while direct FP requires solving a convex optimization in each
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Figure 3.3: Beamforming for sum data rate maximization.

iteration. Therefore, the closed-form FP algorithm is much preferred as compared to the direct

approach.

3.3 Energy Efficiency Maximization

As a final application example in this chapter, we illustrate the use of FP for solving energy

efficiency maximization problems, both for the single-link case which has been treated in prior

FP literature, and for the multiple-link case which requires the new techniques developed in

this thesis.

3.3.1 Link-Level Problem Formulation

Consider an isolated end-to-end wireless link; the sender and the receiver are equipped with

one antenna each. Let h ∈ C be the link channel, and let σ2 be the AWGN power level. The

total power consumption consists of two parts: the transmit power p which is constrained by a

power budget Pmax, and a constant link on-power Pon. The objective is to maximize the ratio

of data rate to the total power consumption, namely the energy efficiency, by optimizing p, i.e.,
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maximize
p

log
(
1 + |h|2p/σ2

)

p+ Pon
(3.37a)

subject to 0 ≤ p ≤ Pmax. (3.37b)

This problem is nonconvex in general.

For this single-link case, (3.37) is a single-ratio concave-convex FP problem and thus its

globally optimal solution can be found using the conventional FP technique (e.g., Dinkelbach’s

method), as already shown in the past literature [12–15]. An alternative is to apply our proposed

quadratic transform. The problem is then reformulated as

maximize
p, y

2y

√
log

(
1 +

|h|2p
σ2

)
− y2 (p+ Pon) (3.38a)

subject to 0 ≤ p ≤ Pmax. (3.38b)

Clearly, the optimal y for fixed p is

y⋆ =

√
log (1 + |h|2p/σ2)

p+ Pon
. (3.39)

Then solving p for fixed y is a convex problem. This iteration converges to the global optimum

according to Theorem 7.

Furthermore, [12] suggests a simple extension to include multiple links. Consider a total

of n links. Let pi be the transmit power of the ith link, and let hi be its channel. The power

constraint is imposed on the sum transmit power across the links. A crucial assumption here

is that these links use separate spectrum bands and thus do not interfere with each other. A

max-min energy efficiency problem is formulated as

maximize
p

min
i

{
log
(
1 + |hi|2pi/σ2

)

pi + Pon

}
(3.40a)

subject to pi ≥ 0, ∀i (3.40b)
n∑

i=1

pi = Pmax. (3.40c)

Observe that the above problem is a concave-convex max-min-ratio problem, so either the

generalized Dinkelbach’s method of Theorem 4 or the quadratic transform can be used to find

the globally optimum solution.

Although the above energy efficiency maximization problem involves more than one wireless

links, its objective function the pointwise minimum across the multiple links and thus can be

easily tackled. Actually, the power variables of the different links are still optimized by the

generalized Dinkelbach’s method in Section 2.2.1 on a per-link basis to a large extent, so we
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still deem (3.40) as a link-level problem.

A key component missing in the above link-level setup is “interference”. It is far more

challenging and yet far more worthwhile to consider energy efficiency at a system level with

cross-link interference taken into consideration.

3.3.2 System-Level Problem Formulation

Energy efficient maximization across multiple interfering links is a more challenging problem.

Consider a spatial multiplexing multiple-antenna broadcast channel model with one sender

equipped with M antennas to send individual data to its M receivers. Assume that every

receiver has N antennas and supports one data stream. Let Hm ∈ C
N×M be the channel

between the sender and the mth receiver; let vm ∈ C
M be the beamformer for the transmission

to the mth receiver. The energy efficiency maximization problem in this case is formulated as

maximize
v

∑M
m=1Rm(v)

∑M
m=1 ‖vm‖22 + Pon

(3.41a)

subject to

M∑

m=1

‖vm‖22 ≤ Pmax, (3.41b)

where the rate function Rm(v) of receiver m is

Rm(v) = log

(
1 + vH

mHH
m

(
σ2IN +

∑

n 6=m

Hmvnv
H
n HH

m

)−1

Hmvm

)
. (3.42)

We first describe the approach in [12–15]. Dinkelbach’s method recasts the objective func-

tion to

fd(v, y) =
M∑

m=1

Rm(v)− y

(
M∑

m=1

‖vm‖22 + Pon

)
. (3.43)

However, unlike the single-link case, the reformulation fd is no longer a concave function of

v, so optimizing v for fixed y is numerically difficult. Hence, the iterative algorithm based

on Dinkelbach’s method cannot be easily extended to the multiple-link scenario. In fact, [15]

considers multiple links only under the assumption that the resulting SINRs are all sufficiently

high; [14] globally solves the fd maximization problem using a monotonic optimization approach

(which has an exponential-time complexity), and also proposes a polynomial-time algorithm to

attain a stationary point when the transmitter has a single antenna (i.e., when vm reduces to

a scalar).

Moreover, [42] proposes a gradient method to maximize the nonconcave function fd in

(3.43), and [43] advocates successive convex approximation. But none of them can find in

polynomial time the globally optimal v that maximizes fd. We remark that the optimality

of v in maximizing fd is critical to the convergence of the Dinkelbach’s method [7], so these

existing polynomial-time algorithms are not guaranteed to converge in general. By contrast,
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our approach does not rely on the Dinkelbach’s method, and has provable convergence. As a

further remark, if the sum rate objective function is changed to the superposition coding inner

bound, the new problem after the Dinkelbach’s method would have been convex and can be

optimally solved by a water-filling scheme [44].

3.3.3 Iterative Optimization by Nested Fractional Programming

We advocate a novel use of the quadratic transform to address the problem. First, apply the

single-ratio quadratic transform (i.e., Theorem 3) to decouple the energy efficiency ratio as

fq(v, y) = 2y

(
M∑

m=1

Rm(v)

) 1

2

− y2

(
M∑

m=1

‖vm‖22 + Pon

)
. (3.44)

The same issue now arises as with Dinkelbach’s method—the reformulated objective function

is not concave in v. It is crucial to note that the function x
1

2 is nondecreasing and concave, and

also that the second term in (3.44) is concave. Thus, the concavity of fq over v can be restored

if the term inside the square root
∑M

m=1 Rm is recast as a concave function.

Following this idea, we apply the (multidimensional) quadratic transform to each SINR

term inside the Rm expression (3.42) in fq, and further recast fq to fqq:

fqq(v, y, z) = 2y

(
M∑

m=1

log

(
1 + 2ℜ

{
zHmHmvm

}
− zHm

(
σ2IN +

∑

n 6=m

Hmvnv
H
n HH

m

)
zm

)) 1

2

− y2

(
M∑

m=1

‖vm‖22 + Pon

)
. (3.45)

The ultimate reformulation of (3.41) after the two uses of the quadratic transform now

becomes

maximize
v, y, z

fqq(v, y, z) (3.46a)

subject to
M∑

m=1

‖vm‖22 ≤ Pmax (3.46b)

zm ∈ C
N , ∀m. (3.46c)

We emphasize that y is introduced by the first use of FP for decoupling the energy efficiency

ratio while zm is introduced by the second use of FP for decoupling the SINR terms.

We propose an iterative optimization. When all the other variables are held fixed, the

optimal zm is

z⋆m =

(
σ2IN +

∑

n 6=m

Hmvnv
H
n HH

m

)−1

Hmvm, ∀m. (3.47)
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Algorithm 6: Nested FP for Energy Efficiency Maximization

1 Initialize v to a feasible value;
2 repeat

3 Update z by (3.47);

4 Update y by (3.48);

5 Update v by solving the convex optimization problem
(3.46) for fixed z and y;

6 until the value of function fqq in (3.45) converges;

After the update of z, the optimal y is

y⋆ =

√∑M
m=1 Rm(v)

∑M
m=1 ‖vm‖22 + Pon

. (3.48)

Most importantly, when z and y are both fixed, (3.46) is a convex problem of vm, and therefore

the optimal vm can be efficiently found using the standard numerical method.

This iterative optimization is summarized in Algorithm 6. We refer to it as the nested FP

approach, because the reformulating procedure involves an outer FP for the energy efficiency

ratio as well as an inner FP for the nesting SINR terms. Based on the equivalence of objective

function property C3 stated in Section 2.1.2, it is easy to verify the convergence of Algorithm 6 to

a stationary point of the original problem (3.41) with the energy efficiency value nondecreasing

after each iteration.

3.3.4 Numerical Results

The simulation model assumes flat-fading channel(s) over a 1 MHz-wide frequency band. The

maximum transmit power level is set to be −39 dBm/Hz; the on-power level is set to be 5

dBm; the background noise level is set to be −160 dBm/Hz. We test the proposed algorithm

for two network scenarios:

• Single-link case: Consider one pair of sender and receiver, equipped with one antenna

each; the channel coefficient between them is modeled with −120 dB pathloss.

• Multiple-link case: Consider one sender and three receivers; the sender has 3 antennas

and the receivers have 2 antennas each. The channel coefficients between the transmit

and receive antennas are modeled with independent and identically distributed (i.i.d.)

Rayleigh fading component plus −120 dB pathloss.

Fig. 3.4 compares the Dinkelbach’s transform approach [12–15] and the proposed quadratic

transform in maximizing energy efficient for the single-link case. It can be observed that

Dinkelbach’s transform gives a faster convergence. To attain the optimal energy efficiency,
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Dinkelbach’s transform needs 4 iterations while the quadratic transform needs 8 iterations.

This result agrees with the convergence rate analysis in Section 2.3.2.

Fig. 3.5 evaluates the performance of Algorithm 6 in maximizing the multiple-link energy

efficiency. We reiterate that Dinkelbach’s transform [12–15] is not applicable in this case. As

can be seen from the figure, Algorithm 6 raises the energy efficiency significantly to more than

four-fold after just 8 iterations.
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Figure 3.4: Energy efficiency maximization for a single link.
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Figure 3.5: Energy efficiency maximization for a broadcast network.
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3.4 Summary

We use the new FP technique, the quadratic transform, to tackle a broad range of continuous FP

problems with multiple ratios in contrast to the conventional techniques which can only handle

single ratio or the max-min case. Based on the quadratic transform, a variety of FP approaches

are devised for solving the continuous problems in communication systems, i.e., power control,

beamforming, and energy efficiency maximization. The proposed FP approaches recast the

original nonconvex problem to a sequence of convex problems, thereby allowing efficient iterative

optimization with provable convergence to a stationary point solution.



Chapter 4

Discrete Optimization Problems

This chapter tackles the discrete problems, such as those involving user scheduling, which are

considerably more difficult to solve. Unlike the continuous problems, discrete or mixed discrete-

continuous problems normally cannot be recast as convex problems. In contrast to the common

heuristic of relaxing the discrete variables [21], this work reformulates the original problem in

an FP form amenable to distributed combinatorial optimization. We illustrate this approach

by considering an important and challenging problem of uplink coordinated multi-cell user

scheduling in wireless cellular systems. Uplink scheduling is more challenging than downlink

scheduling, because uplink user scheduling decisions significantly affect the interference pat-

tern in nearby cells. Further, the discrete scheduling variable needs to be optimized jointly

with continuous variables such as transmit power levels and beamformers. The central idea of

the proposed FP approach is to decouple the interaction among the interfering links, thereby

permitting a distributed and joint optimization of the discrete and continuous variables with

provable convergence. Importantly, it is shown that the well-known WMMSE algorithm is e-

quivalent to a particular way of FP, but the proposed way is far more suited for optimizing

discrete variables like the scheduling decision.

4.1 Single-Antenna Uplink User Scheduling

The goal of this section is to optimally schedule uplink users and to set their transmit power

levels jointly across multiple cells so as to maximize the network utility in a SISO network. The

problem involves mixed continuous variables (power) and discrete variables (uplink scheduling);

it is quite challenging, because scheduling and power decisions in each cell significantly affect

the interference patterns in neighboring cells. This section proposes an FP-based reformulation

that allows power control and uplink scheduling to be determined jointly and in a distributed

fashion with the assistance of some auxiliary variables. We remark that this approach can be

further extended to apply to the full-duplex [45] scenario where uplink and downlink coexist.

We explore the use of FP for optimization problems that involve discrete variables within the

log(1+SINR) rate expressions—in particular the problem of coordinated multi-cell uplink user

52



Chapter 4. Discrete Optimization Problems 53

(a) Uplink multicell network (b) Downlink multicell network

Figure 4.1: Interference pattern depends on the user scheduling in the neighboring cells in the
uplink, but not so in the downlink. Here, the solid lines represent the desired signal; the dashed
lines represent the interfering signal; the scheduled user terminal in each cell is circled.

scheduling in wireless cellular networks, where the optimization parameters are the selection of

which users to schedule in each cell, along with their power and beamforming vectors.

The user scheduling problem in the uplink is more challenging than in the downlink, because

the uplink interference pattern depends strongly on the scheduling decisions of the neighboring

cells, whereas in the downlink, the interference pattern does not depend on scheduling decisions

if the powers are fixed at the BSs, as illustrated in Fig. 4.1. Nonetheless, if the powers are not

fixed, then the interference in downlink network can be affected by scheduling decisions as

well—a BS without any user scheduled would be deactivated.

4.1.1 Problem Formulation

Consider the uplink of a wireless cellular network. Let B be the set of BSs deployed in the

network, and let Ki be the set of users who are associated with BS i. Each BS i together with its

associated users in Ki forms a cell. In every time-slot, users are scheduled for uplink transmission

on a cell basis. In this section, the BSs and the users are assumed to be equipped with a single

antenna each; extension to the multiple-antenna case involving beamforming optimization is

considered in the next section. For the user scheduling and power control purpose, introduce

variable si ∈ Ki to denote the user to be scheduled at BS i, and introduce variable pk to denote

the transmit power level of user k if it gets scheduled for uplink transmission. Let hi,k ∈ C

be the uplink channel coefficient from user k to BS i; let σ2 be the power level of AWGN.

Given a set of weights wk that reflect the user priorities in each time-slot, we have the following
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weighted sum rate maximization objective:

fo(s, p) =
∑

i∈B

wsi log

(
1 +

|hi,si |2psi∑
j 6=i |hi,sj |2psj + σ2

)
. (4.1)

The joint scheduling and power control problem in an uplink SISO network can be written as

maximize
s, p

fo(s, p) (4.2a)

subject to 0 ≤ pk ≤ Pmax, ∀k (4.2b)

si ∈ Ki ∪ {0}, ∀i, (4.2c)

where Pmax is the maximum transmit power level of the user and 0 refers to the decision of

not scheduling any user. Because of the SISO setting, at most one user can be scheduled in

each cell i; we set si = k if some user k is scheduled in the cell, and set si = 0 otherwise. In

particular, wsi and psi are both implicitly set to zero if si = 0.

The above problem is difficult to tackle directly due to the fact that the uplink scheduling

decisions have significant impact on the interference pattern. A particular scheduling decision

si in cell i strongly influences the scheduling decisions sj in its neighboring cells. In addition,

even when the discrete variable s is held fixed, solving for the power variable p in (4.2) is still

nontrivial, because the objective function is nonconvex.

4.1.2 Implicit Scheduling by Power Control

Before proceeding to the proposed FP approach, we discuss an alternative perspective of treating

the uplink scheduling problem as a power control problem, and explain why the corresponding

optimization method would not produce good results numerically.

As opposed to formulating the joint uplink scheduling and power control as a mixed discrete-

continuous problem as in (4.2), we could replace the scheduling variable s with the power

variable p, based on the observation that a user k is scheduled if and only if its power level pk

is positive. Then, the problem can be converted to a continuous power optimization over all

users. To formalize this idea, we rewrite the objective function as

fo(p) =
∑

i∈B

∑

k∈Ki

wk log

(
1 +

|hi,k|2pk∑
k′ 6=k |hi,k′ |2pk′ + σ2

)
, (4.3)

where k′ refers to any other user in the network, including those who are in the same cell as

user k, i.e., k′ ∈ ⋃i∈B Ki. The uplink scheduling problem can then be rewritten as a power
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optimization problem involving only the power variable p:

maximize
p

fo(p) (4.4a)

subject to 0 ≤ pk ≤ Pmax, ∀k. (4.4b)

Although strictly speaking, the above optimization problem does not have the constraint that

at most only one user can be active, the optimal solution of (4.4) does take such a form in most

practical regime of interest. In this case, the two problems (4.4) and (4.2) are equivalent, i.e.,

the optimal solution (s⋆, p⋆) of (4.2) can recover the optimal p⋆ for (4.4), and vice versa.

Problem (4.4) is nonconvex, but it can be solved by using the gradient method to attain

a stationary point, or by using the FP methods from the previous chapter, either the direct

approach or the closed-form approach. After solving (4.4), we simply schedule those users with

positive pk.

However, as a subtle point we wish to highlight, using a power control algorithm to solve

the scheduling problem has a serious deficiency. The main problem is that due to the highly

nonconvex nature of the objective function, the stationary point of a power control algorithm

is highly sensitive to the initial condition. As a result, this class of methods suffers from a

serious premature turning-off issue. If some link is deactivated in the early stage of the iterative

optimization, it can never be reactivated in the later iterations, because its local gradient would

strongly discourage it from doing so. Past efforts to convexify this power control problem, e.g,

by approximating the problem as a geometric program [35], essentially smooths out the local

optima; but it works only at high SINR. For the scheduling problem, most of the links have low

SINRs—in fact, due to intra-cell interference, at most one link in each cell can have its SINR

higher than 1.

The main contribution of this part of work is to show that a novel use of the Lagrangian

dual transform, coupled with the quadratic transform, can avoid the premature turning-off issue

through weighted bipartite matching.

4.1.3 Pricing Method by Fractional Programming

The scheduling decision and the transmit power level of the scheduled user in each cell interact

with its neighboring cells through the interference term in the denominator of rate expression

in the objective function. A naive way for tackling the problem would be to make scheduling

and power allocation decisions on an individual per-cell basis, assuming that the interference is

fixed, then update the interference terms, and iterate between the cells. But such an approach

does not work well, because the interference pattern can drastically change when a different

user is scheduled; there is no guarantee that the iteration would even converge.

The main idea of our proposed method is to devise a way of using FP to enable the individual

update of scheduling and power on a per-cell basis, while ensuring convergence. Toward this

end, the quadratic transform and the Lagrangian dual transform are used together to recast the
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problem in a sequence of equivalent forms. We remark that applying the quadratic transform

alone cannot achieve this desired decoupling.

First, apply the Lagrangian dual transform to reformulate the original objective function

fo(s, p) as

fr(s, p, γ) =
∑

i∈B

wsi log (1 + γi)−
∑

i∈B

wsiγi +
∑

i∈B

wsi(γi + 1)|hi,si |2psi∑
j |hi,sj |2psj + σ2

. (4.5)

The original problem (4.2) is now reformulated as

maximize
s, p, γ

fr(s, p, γ) (4.6a)

subject to (4.2b), (4.2c). (4.6b)

We propose to optimize all the variables iteratively. When (s, p) are held fixed, the optimal

γ can be explicitly determined by setting ∂fr/∂γi to zero, i.e.,

γ⋆i =
|hi,si |2psi∑

j 6=i |hi,sj |2psj + σ2
. (4.7)

Next, we apply the quadratic transform on the fractional term in (4.5) in order to to optimize

(s, p) in fr for fixed γ. Introduce an auxiliary variable yi for each ratio
wsi

(γi+1)|hi,si
|2psi∑

j |hi,sj
|2psj+σ2 in the

last term of fr(s, p, γ). We use the vector Lagrangian dual transform in Theorem 10 to further

reformulate fr(s, p, γ) as fq(s, p, γ, y) in (4.8):

fq(s, p, γ, y) =
∑

i∈B

wsi log(1 + γi)−
∑

i∈B

wsiγi +
∑

i∈B

(
2yi

√
wsi(γi + 1) |hi,si |2 psi −

y2i

(
∑

j∈B

∣∣hi,sj
∣∣2 psj + σ2

))
(4.8)

=
∑

i∈B

(
wsi log(1 + γi)− wsiγi − y2i σ

2 + 2yi

√
wsi(γi + 1) |hi,si |2 psi −

∑

j∈B

y2j |hj,si|2 psi

)
, (4.9)

Hence, in order to solve problem (4.6) over (s, p), we can equivalently consider the following

problem over (s, p, y):

maximize
s, p, y

fq(s, p, γ, y) (4.10a)

subject to (4.2b), (4.2c). (4.10b)
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The overall strategy is then to iteratively optimize γ according to (4.7) and optimize (s, p, y)

as in (4.10).

The newly introduced objective function fq groups the terms related to the same si together.

The key observation is that the scheduling and power variables (s, p) are now decoupled in this

new formulation (4.10). Specifically, the scheduling and power optimization in each cell, i.e.,

(si, pi), can be done independently in each cell, as long as γ and y are fixed. This motivates an

iterative approach for solving (4.10).

We propose to maximize fq over variables γ, y, s and p in an iterative manner as follows.

The update of γ is already shown as in (4.7). When all the other variables are fixed, the optimal

y can be obtained by setting ∂fq/∂yi to zero, i.e.,

y⋆i =

√
wsi(1 + γi)|hi,si |2psi∑
j∈B |hi,sj |2psj + σ2

. (4.11)

Fixing y and γ, if user k is to be scheduled by its associated BS j, we can derive its optimal

transmit power level pk by setting ∂fq/∂pk to zero. Subject to a maximum power constraints,

the optimal pk can be explicitly determined by

pk = min




Pmax,

wk(1 + γi) |hi,k|2 y2i(∑
j∈B |hj,k|2 y2j

)2





, ∀k ∈ Ki. (4.12)

The most important part of the algorithm is the optimization of the scheduling variable s. As

stated previously, the objective function fq has the desirable property that the optimization of

s is decoupled on a per-cell basis, i.e., the optimization of si does not depend on the other sj

variables for j 6= i, when γ and y are fixed. Now, since the optimal transmit power level pk

is already determined by (4.12) if user k is scheduled, we can substitute the optimized power

pk into fq and make optimal scheduling decision through a simple search to find the user that

maximizes fq in each cell. Moreover, we can rewrite fq in the form of difference between two

positive functions, and formally state the scheduling decision as follows:

s⋆i =





0, if max
k∈Ki

{
Gi(k)−

∑

j 6=i

Dj(k)

}
≤ 0;

argmax
k∈Ki

{
Gi(k)−

∑

j 6=i

Dj(k)

}
, otherwise,

(4.13)

where the functions Gi(k) and Dj(k) are defined as

Gi(k) = wk log (1 + γi)− wkγi − pky
2
i |hj,k|2 + 2yi

√
wk(1 + γi) |hi,k|2 pk, ∀k ∈ Ki (4.14)
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Algorithm 7: Joint Uplink Scheduling and Power Control

1 Initialize s, p, and γ to feasible values;

2 repeat

3 Update y by (4.11);

4 Update γ by (4.7);

5 Update (s, p) jointly by (4.13) and (4.12);

6 until the value of function fq in (4.8) converges;

and

Dj(k) = y2j |hj,k|2 pk, ∀k /∈ Kj. (4.15)

In the above equation (4.13), we interpret Gi(k) and Dj(k) as the utility and penalty functions,

respectively, so that the scheduling decision has an intuitive utility-minus-price structure. More

precisely, Gi(k) is the utility gain of scheduling user k at BS i and Dj(k) is the penalty for

interfering a neighboring cell j by scheduling user k. The best user to schedule is the one that

balances these two effects. Note that the scheduling and power control are done on a per-cell

basis. This enables distributed implementation.

Furthermore, when the max value of Gi(k)−
∑

j 6=iDj(k) at BS i is less than zero, it implies

that no user should be scheduled at this BS i in the time slot in order to reduce the intercell

interference suffered by the neighboring BSs. This situation possibly occurs in an ultra-dense

uplink network scenario.

We summarize the proposed joint scheduling and power control strategy in Algorithm 7.

Note that the algorithm is not a conventional block coordinate ascent method, because the

optimizing objective function is not fixed, i.e., s, p and y are optimally updated for fq while γ

is optimally updated for fr. Nevertheless, its convergence can be established by using the MM

interpretation in Section 2.6.

Proposition 6. Algorithm 7 is guaranteed to converge, with the weighted sum rate fo mono-

tonically nondecreasing after each iteration. The converged solution is a stationary point of fo

with respect to p if s is assumed to be fixed.

We note that due to the nonconvex nature of the problem with respect to p, finding a

stationary point in p is likely to be the best that one can do. Moreover, since s is a discrete

variable, it is difficult to assert any optimality with respect to s. In fact, we can show that even

with p fixed, finding the optimal s is NP-hard.

To see the NP-hardness, we can use an argument inspired by [46] in which the NP-hardness

of the power control problem is established. Construct a simplified example, in which each

BS receives interference from a subset of neighboring users only, and the interference level is

large so whenever interference is present the rate is effectively zero, and otherwise the rate is

one. Selecting one user in each cell to maximize the overall sum rate now amounts to solving

a maximum independent set problem on a graph, which is NP-hard. Further, unless P = NP,
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Table 4.1: Sum log-utilities of FP-based coordinated uplink scheduling and power control as
compared to the baselines.

Algorithm Total Log-Utility

Power Control by WMMSE 27.17

Fixed Interference 52.16

Proposed FP Method 60.15

it is impossible even to solve the problem within a constant approximation ratio in polynomial

time [47].

Observe here that Algorithm 7 avoids premature turning-off. Even if a user k is not activated

in the tth iterate, the related auxiliary variable yi is still nonzero according to (4.11), so long

as at least some other user is scheduled in its cell. Thus, user k still stands a chance to be

reactivated in future iterations when the interference pattern becomes favorable, as indicated

by (4.12). Furthermore, if all the users in cell i have been turned off, then the corresponding

BS will be turned off as well, and consequently no user in the cell will be rescheduled in the

further iterations. To resolve this issue, one heuristic method is to put a positive lower bound

on yi in order to avoid shutting BS i off.

As a final remark, throughout this chapter we have assumed that the full channel state

information (CSI) is available. In practical implementations, the cost of channel estimation

for all users however could be prohibitive. Further, including all users in the scheduling step

can incur large computational complexity. The complexity in implementing Algorithm 7 can

be lowered in practice using a two-stage scheduling strategy. We first roughly choose a subset

of potential users according to their weights, then apply Algorithm 7 to refine the scheduling

decision. This can greatly reduce the run-time complexity and the cost of acquiring CSI.

4.1.4 Numerical Results

To evaluate the performance of the proposed joint uplink scheduling and power control algo-

rithm, numerical simulation is performed in a 7-cell wrapped-around topology with a total of

84 users uniformly placed in the network. The BS-to-BS distance is 0.8 km. Each user is

associated with the strongest BS. The maximum transmit power spectral density (PSD) of the

users is −47 dBm/Hz; the background noise PSD is set to be −169 dBm/Hz over 10 MHz

bandwidth. The wireless channel model includes a distance-dependent pathloss component at

128.1+37.6 log10(d) dB (where the distance d is in km) and a log-normal shadowing component

with 8dB standard deviation.

In the simulation, the joint user scheduling and power control problem is solved across the

multiple cells in each time-slot with the user priority weights updated as the reciprocals of

long-term average user rates over the time, in order to ensure proportional fairness across the

users. Over time, this setting of the weights maximizes the log-utility,
∑

k log(R̄k), over all

users in the network, where R̄k is the long-term average rate of user k, expressed in Mbps in
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the numerical results below.

The following two baseline uplink scheduling strategies are also simulated for comparison

purpose:

• Power Control : The uplink scheduling and power control problem can also be thought

of as a global power control problem, in which users not being scheduled are assigned

zero power. Thus, we can run power control for all the users in the network at the same

time. Most users will be assigned zero power; users assigned positive transmit power

levels (typically at most one per cell) are the ones scheduled. This global power control

problem is highly nonconvex. In the simulation, we use the WMMSE algorithm [40, 41]

for power control to arrive at a local optimum.

• Fixed Interference Method : In this method, uplink scheduling and power control are per-

formed iteratively. Each user is initialized with some powers. In the scheduling stage, the

user that maximizes the weighted rate in each cell is chosen, assuming fixed interference

pattern from the previous iteration. In the power control stage, the powers of the sched-

uled users are updated by solving a weighted sum rate maximization problem. We iterate

between the two steps until convergence or a fixed number of iterations is reached.

Fig. 4.3 shows the cumulative distribution function (CDF) of the user data rates in the

network and Table 4.1 lists the log-utility1 achieved by the different methods for uplink user

scheduling and power control. We see that the baseline of power control provides poor perfor-

mance, mainly because the power control algorithm tends to stuck in a locally optimal solution

of the nonconvex problem. The fixed-interference method is also not capable of arriving at

a desirable solution. In contrast, the proposed algorithm performs much better in terms of

utility, as shown in Table 4.1. Fig. 4.3 shows that the 10th-percentile user rate of the proposed

algorithm is at least 50% more than that of the fixed-interference method. Since these low-rate

users are typically located at the cell-edge where cross-cell interference is the strongest, this

shows that the proposed FP-based algorithm is effective in alleviating interference by coordi-

nating uplink scheduling and power control. We remark that this gain is achieved despite the

low overall complexity of the FP method.

Moreover, in order to demonstrate that the proposed FP method indeed outperforms the

other methods in maximizing the weighted sum rate, we now use the same rate weight sequence

for all the algorithms, as displayed in Fig. 4.2; the weight sequence is generated by the FP

method. For the sake of display clarity, we plot the normalized weighted sum rate, namely

weighted sum rate divided by sum weight, versus the time slot. The figure shows that the

proposed method outperforms the benchmarks consistently in maximizing the weighted sum

rate.

1The utility is computed for data rate in Mbps throughout the thesis.
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Figure 4.2: Comparison of the proposed FP-based coordinated uplink user scheduling and power
control method with two baseline methods in terms of CDF of user rates.
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Figure 4.3: Normalized weighted sum rate vs. time slot when the weight sequence by the
proposed FP method is used for all the methods.
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4.2 Multi-Antenna Uplink User Scheduling

The objective here is to schedule uplink users and to set their transmit beamformers jointly

across multiple cells so as to maximize the network utility in a MIMO network. The key step is to

incorporate a further FP reformulation involving vector variables. The resulting reformulation

is structured as a weighted bipartite matching problem and allows the optimization of discrete

and continuous variables in a joint and distributed fashion by using the standard techniques,

e.g., the auction algorithm [48] and Hungarian algorithm [49] for solving the weighted bipartite

matching problem globally.

4.2.1 Problem Formulation

Following the notation in Section 4.1.1, we use B to denote the set of BSs in the network, Ki

the set of users who are associated with BS i, σ2 the power level of AWGN, wk the weight of

user k, and Pmax the maximum transmit power level at the user side.

We now assume that each user is equipped with N antennas and each BS is equipped withM

antennas. Spatial multiplexing can therefore support up to M data streams per cell (but some

data streams may have zero throughput). Let sim be the index of the user who is scheduled in

the mth stream at BS i. Let vk ∈ C
N be the transmit beamformer of user k if it gets scheduled.

Let Hi,k ∈ C
M×N be the uplink channel from user k to BS i. The joint uplink user scheduling

and beamforming problem with a weighted sum-rate maximizing objective can be formulated

as

maximize
s,v

fo(s,v) (4.16a)

subject to ‖vim‖22 ≤ Pmax, ∀(i,m) (4.16b)

sim ∈ Ki ∪ {0}, ∀(i,m), (4.16c)

where the objective function fo is

fo(s,v) =

∑

(i,m)

wsim log

(
1 + vH

sim
HH

i,sim

(
σ2IM +

∑

(j,n)6=(i,m)

Hi,sjnvsjnv
H
sjn

HH
i,sjn

)−1

Hi,simvsim

)
. (4.17)

As before, wsim and vsim are both implicitly set to zero if sim = 0. Note that under this MIMO

setting we allow scheduling up to M users per cell. Using the number of antennas, namely

the degrees of freedom, to limit the number of scheduled users is reasonable in most of the

practical scenarios. Theoretically speaking, however, this scheme can be suboptimal in some

special cases like the low-SNR regime.

The above problem is more challenging than the uplink user scheduling and power control

problem (4.2) of the SISO case. In addition to the intercell interference, we also need to take
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into account the interference coming from the same cell because multiple users can be scheduled

at each BS simultaneously.

4.2.2 Joint Fractional Programming and Matching

Recall that in Section 4.1.1 we make use of the quadratic transform and the Lagrangian dual

transform to derive a reformulation for the joint uplink scheduling and power control problem,

whereby the power and scheduling variables can be grouped on a per-cell basis. This reformu-

lating procedure can be adapted to the multidimensional case for problem (4.16). First, apply

the multidimensional Lagrangian dual transform in Theorem 10 to reformulate the original

objective function fo(s,v) as fr(s,v, γ):

fr(s,v, γ) =
∑

(i,m)

wsim

(
log(1 + γim)− γim + (1 + γim)vH

sim
HH

i,sim
·

(
σ2IM +

∑

(j,n)

Hi,sjnvsjnv
H
sjn

HH
i,sjn

)−1

Hi,simvsim

)
(4.18)

with an auxiliary variable γim introduced for each data stream (i,m). Thus, the original problem

(4.16) is equivalent to

maximize
s,v, γ

fr(s,v, γ) (4.19a)

subject to (4.16b), (4.16c). (4.19b)

Following Algorithm 7, we propose to optimize the variables in (4.19) in an iterative fashion.

When the primal variables s and v are both held fixed, maximizing fr over γ is a convex problem

which can be efficiently solved by setting ∂fr/∂γim to zero, that is

γ⋆im = vH
sim

HH
i,sim


σ2IM +

∑

(j,n)6=(i,m)

Hi,sjnvsjnv
H
sjn

HH
i,sjn




−1

Hi,simvsim . (4.20)

Note that the optimal γim is equal to the resulting uplink SINR in data stream (i,m) exactly.

We then consider optimizing s and v for fixed γ. This subproblem only involves the last term

of fq which has a multidimensional sum-of-ratios form. By treating
√

wsim(1 + γim)Hi,simvsim

as the numerator vector ai and
(
σ2IM +

∑
(j,n)Hi,sjnvsjnv

H
sjn

HH
i,sjn

)
as the denominator matrix
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Bi in Theorem 9 from Section 2.5.1, we arrive at a new objective function

fq(s,v, γ,y) =
∑

(i,m)

wsim log(1 + γim)−
∑

(i,m)

wsimγim +
∑

(i,m)

(
2
√

wsim(1 + γim) ·

ℜ
{
vH
sim

HH
i,sim

yim

}
− yH

im

(
σ2IM +

∑

(j,n)

Hi,sjnvsjnv
H
sjn

HH
i,sjn

)
yim

)
, (4.21)

where an auxiliary variable yim ∈ C
M is introduced with respect to each data stream (i,m).

Thus, the optimization of fr in (4.19) is further recast to

maximize
s,v, γ,y

fq(s,v, γ,y) (4.22a)

subject to (4.16b), (4.16c). (4.22b)

With the update of γ already shown in (4.20), we now consider the optimization of s, v and

y in fq. First, when all the other variables are fixed, the optimal y can be explicitly determined

by setting ∂fr/∂yim to zero, that is

y⋆
im =

(
σ2IM +

∑

(j,n)

Hi,sjnvsjnv
H
sjn

HH
i,sjn

)−1√
wsim(1 + γim)Hi,simvsim . (4.23)

Observe that the optimal yim is exactly an MMSE receiver scaled by a factor of
√

wsim(1 + γim),

with respect to each data stream (i,m).

It remains to optimize the variables s and v in fq. We gain incorporate the idea of weighted

bipartite matching for the joint optimization of these two variables. The key observation is that

the scheduling of user sim and its transmit beamformer vim in a particular data stream (i,m)

contribute to the objective function (4.21) in a way that is independent of the scheduling and

beamformer choices in other streams. More specifically, if some user k is scheduled in the data

stream (i,m), i.e., sim = k, then the optimal transmit beamformer of user k with respect to

(i,m), denoted as τk,im, can be determined by solving ∂fq/∂vsim = 0, that is

τk,im =

(
∑

(j,n)

HH
j,kyjny

H
jnHj,k + η⋆k,imIN

)−1√
wk(1 + γim)HH

i,kyim, (4.24)

where the dual variable η⋆k,im accounts for power constraint (4.16b) and is optimally determined

by the complementary slackness condition

η⋆k,im = inf
{
ηk,im ≥ 0 : ‖τk,im(ηk,im)‖22 ≤ Pmax

}
. (4.25)

This η⋆k,im can be efficiently evaluated via bisection search.

Therefore, the utility value (in terms of fq) of scheduling user k in one particular data
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Figure 4.4: The scheduling variables sim’s are decoupled on a per-cell basis after the FP-
based reformulation. Optimizing the scheduling variable s in (4.22) can be characterized as
a weighted bipartite matching between the users and the data streams in each cell, with the
matching weights defined by (4.26).

stream (i,m) can be determined analytically. This allows solving s and v jointly by weighted

bipartite matching. To formalize the idea, we define the utility value of assigning user k to data

stream (i,m) as ξk,im:

ξk,im = wk log(1 + γim)− wkγim + 2
√

wk(1 + γim) ℜ
{
τH
k,imHH

i,kyim

}
− σ2‖yim‖22

−
∑

(j,n)

yH
jnHj,kτk,imτH

k,imHH
j,kyjn. (4.26)

As a result, the fq maximizing problem (4.22) reduces to the following weighted bipartite

matching problem:

maximize
x

∑

k∈Ki

N∑

m=1

ξk,imxk,im (4.27a)

subject to
∑

k∈Ki

xk,im ≤ 1, ∀(i,m) (4.27b)

N∑

m=1

xk,im ≤ 1, ∀(k, i) (4.27c)

xk,im ∈ {0, 1} , ∀(k, i,m), (4.27d)

where the binary variable xk,im indicates whether or not user k is scheduled in the mth data

stream at its associated BS i. We remark that the above matching problem is considered at

each BS i individually, as illustrated in Fig. 4.4.

Weighted bipartite matching is a well-studied problem in the field of combinatorics [50].

It can be efficiently solved by the existing algorithms with polynomial-time computational

complexity using, e.g., the Hungarian algorithm [49] and the auction algorithm [48], with a

computational complexity of O((K +M)3). Further, because in practice the matching weights

ξk,im are always evaluated with finite precision, in this finite-precise case, the complexity of
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Algorithm 8: Joint Uplink Scheduling, Power Control,
and Beamforming

1 Initialize s, v and γ to feasible values;

2 repeat

3 Update y by (4.23);

4 Update γ by (4.20);

5 Update (s,v) jointly by (4.24), (4.28) and (4.29);

6 until the value of function fq in (4.21) converges;

matching can be reduced to O((K +M)2) using the algorithm in [51].

After solving for x in problem (4.27), we recover the optimal scheduling variable s⋆ by

s⋆im =

{
k, if x⋆k,im = 1 for some k ∈ Ki;

0, otherwise,
(4.28)

where the decision 0 is made in data stream (i,m) if any user scheduled in the stream would

have contributed to fq negatively. Note that x⋆k,im must be zero if ξk,im < 0. In practice, we

can further facilitate weighted matching by removing the edges corresponding to negative ξk,im

from the bipartite graph. The transmit beamformers of the scheduled users are then set to the

optimal values in (4.24) accordingly:

v⋆
k = τk,im, if x⋆k,im = 1 for some (i,m). (4.29)

We summarize the proposed iterative distributed optimization in Algorithm 8. Like Algo-

rithm 7, this algorithm guarantees convergence although it is not a block coordinate ascent

method, as stated in the following proposition.

Proposition 7. Algorithm 8 is guaranteed to converge, with the weighted sum rate fo mono-

tonically nondecreasing after each iteration. The converged solution is a stationary point of fo

with respect to v if s is assumed to be fixed.

We note that the SISO algorithm in Section 4.1.3 is a special case of the weighted bipartite

matching approach for the MIMO problem. Further, we can use the same argument to show

that computing the optimal s for fixed v is already NP-hard, so the above convergence result is

likely the best one can hope for.

As a final remark, Algorithms 7 and 8 can be initialized with simple but reasonable heuristic.

For example, in a 2×2 MIMO network, the two users with the highest weights in each cell can be

scheduled at the beginning, and their beamformers can be set to maximize the signal strength.

Moreover, we set some small constant δ > 0 and use the convergence criterion |f (t)
q −f

(t−1)
q | < δ

where t is the iteration index.
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4.2.3 Complexity Analysis

We now compare the complexities of Algorithm 8 and the WMMSE method [40, 41] (which is

modified to include scheduling as stated in Section 4.1.2). For ease of analysis, assume that each

cell has the same number of users. Let K be the number of users per cell; let B be the total

number of BSs deployed throughout the network. Following [41], we evaluate the algorithm

complexity with respect to each round of iteration.

First consider the communication complexity. In Algorithm 8, every BS needs to collect

(s,v,y) except γ with respect to each (j, n) pair, so the overall communication complexity

of Algorithm 8 is O(M2B2 + MNB2), which is independent of K. In the WMMSE method,

each BS needs to collect (v, γ,y) with respect to every user in the network, thus the overall

communication complexity of WMMSE is O(MKB2 + NKB2). WMMSE in general has a

much higher communication complexity, because normally K ≫ M (i.e., only a small portion

of users in the cell are scheduled in each time-slot).

We further analyze the computational complexity. Assuming that the classic Hungarian

algorithm is used for weighted bipartite matching, the overall computational complexity of

Algorithm 8 per iteration can be shown to be O(cFP), where

cFP = M4B2 +MN3KB + (M3N +MN2)KB2 + (K +M)3B. (4.30)

Each iteration of the WMMSE algorithm involves a matrix multiplication with respect to

every user-BS pair in the network. Consequently, it requires a computational complexity of

O(cWMMSE), where

cWMMSE =
(
M3 +N3

)
KB +M2KB2 +

(
MN +N2

)
K2B2. (4.31)

We remark that matrix chain ordering needs to be optimized for both of the algorithms to find

the most efficient way of multiplying matrices. For simplicity, we further assume that M and N

are fixed and also that K is much greater than both M and N . Then, the above computational

complexities become

cFP = KB2 +K3B and cWMMSE = K2B2, (4.32)

so Algorithm 8 is more complex if the number of usersK is large. However, as already mentioned

in Section 4.2.2, because the matching weights are in practice expressed with finite precision, the

efficiency of bipartite matching can be improved from O(K3) to O(K2) by using the algorithm

of [51]. Then, we have

cFP = KB2 +K2B < K2B2 = cWMMSE. (4.33)

In this case, Algorithm 8 is overall more computationally efficient than WMMSE.

Finally, we mention the recent work [52] that uses a deep neural network to learn the

mapping from the geometric locations of wireless devices directly to an interference-aware link

activation pattern, thus bypassing the channel estimation stage. In this work, FP is applied
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Figure 4.5: Comparison of the proposed FP-based coordinated uplink user scheduling and
beamforming method with two baseline methods in terms of CDF of user rates.

to generate the training data set. This supervised learning method is adopted as a benchmark

in [53,54] to compare with some other learning-based methods.

4.2.4 Numerical Results

We validate the proposed FP-based approach by simulating a network consisting of 7 cells

in a wrapped around topology. A total of 84 users randomly distributed in the network are

associated with the BS to which the channel is the strongest. Each user is equipped with 2

antennas and each BS is equipped with 4 antennas. The uplink MIMO channels consist of two

components: a large-scale fading component (including pathloss and shadowing), which follows

the model discussed in Section 4.1.4, and a Rayleigh fading component. The user weights in

every time-slot are updated as the reciprocal of the long-term average rates in order to maximize

a proportional fairness utility. All other parameters, i.e., the channel pathloss model, AWGN,

maximum transmit power, and spectrum bandwidth, follow the settings in Section 4.1.4.

The following methods are introduced as benchmarks:

• WMMSE : The WMMSE algorithm is introduced in [40, 41]. To use WMMSE for user

scheduling, we initialize all the users in the network with some random beamformers, then

run the WMMSE algorithm to optimize weighted sum rate. At convergence, most users

would be assigned zero beamformer; those assigned nonzero beamformers are scheduled.
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Table 4.2: Sum log-utilities of the proposed coordinated uplink scheduling and beamforming
method as compared to the two baseline schemes.

Algorithm Total Log-Utility

WMMSE 175.87

Fixed Interference 183.45

Proposed FP Method 193.79

User scheduling is therefore determined implicitly by beamforming. In the SISO case, the

beamforming step reduces to power control.

• Fixed interference method : This heuristic method extends the fixed interference method

in Section 4.1.4. Iteratively, apply a beamforming method (e.g., WMMSE) for fixed user

scheduling variable s, and then optimize s for fixed beamformers. This works well in

the downlink because the optimal scheduling can be explicitly determined [38]. For the

uplink, the heuristic is to emulate the downlink by assuming fixed interference from the

neighboring cells.

The proposed algorithm is compared with the aforementioned two baselines. As shown in

Fig. 4.5, the proposed FP-based method has a significant advantage over the baselines partic-

ularly for low-rate users. For example, the rates of the 10th-percentile users is improved by

at least 50% the proposed algorithm. These low-rate users are mostly located close to the cell

edges, highlighting the important role of coordinated uplink scheduling and beamforming in

interference mitigation. Table 4.2 shows that the proposed FP method substantially improves

the sum log-utility in the network as compared to the benchmarks, verifying that interfer-

ence management by coordinating user schedules and beamformers is crucial to the network

performance.

4.3 Discrete Beamforming

Thus far it is assumed that each beamformer vim can be set to an arbitrary vector as long

as the power constraint ‖vim‖22 ≤ Pmax is satisfied. We now consider a discrete scenario for

beamforming where the choice for vim is restricted to a codebook

V =
{
φ1,φ2, · · · ,φ|V|

}
. (4.34)

In the above, each φn ∈ C
N (for n = 1, . . . , |V|) represents a possible beamforming vector.

In this case, if some user k is scheduled in the data stream (i,m), then its optimal transmit

beamformer τk,im in terms of fq can be obtained by searching through the codebook, that is

τk,im = argmax
φ∈V

{
2
√

wk(1 + γim) ℜ
{
φHHH

i,kyim

}
−
∑

(j,n)

yH
jnHj,kφφ

HHH
j,kyjn

}
. (4.35)
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The bipartite matching process (4.27) can then be performed with ξk,im set according to (4.26)

but using the above τk,im. After matching, the optimal v is recovered by (4.29).

To find the optimal vim in the discrete search (4.35) requires at most a computational

complexity of O(|V|). This complexity can be further reduced to O(log |V|) by taking advantage

of the functional structure of (4.35). The idea is to first maximize fq over v without considering

the discrete constraint (4.34) and then find the discrete solution φ ∈ V that is closest to the

relaxed solution ṽim, for every (i,m) pair, i.e.,

τk,im = argmin
φ∈V

‖φ− ṽim‖2, (4.36)

where the relaxed solution ṽim is the τk,im in (4.24) without the discrete codebook constraint.

Observe that the right-hand side of (4.35) is a concave quadratic function of variable φ, and

then after completing the square, it can be shown that updating τk,im by (4.36) yields exactly

the same solution as in (4.35). Therefore, although the above relax-and-then-round approach

in (4.36) is a common heuristic for discrete beamforming, our FP framework gives a theoretical

justification by showing that this approach actually maximizes the reformulated objective fq.

An efficient way to perform the optimization (4.35) can now be devised based on (4.36), as

stated in the following proposition.

Proposition 8 (Nearest Point Projection for Discrete Beamforming). The optimal update

(4.35) for discrete beamforming can be realized by the nearest point projection as in (4.36) with

a computational complexity of O(log |V|).

Proof. Construct a k-d tree [55] for all the elements of V in advance. The following three steps

produce the nearest-point projection (4.36): Insert ṽim in the k-d tree; then search for the

nearest neighbor of ṽim in the tree and output it as the projection result; finally delete ṽim

from the tree. The insertion, search, and deletion operations all have an average complexity

O(log |V|).

We remark that a similar result can be derived for discrete power control in the SISO case,

in which case the search through the k-d tree reduces to a one-dimensional bisection search.

4.4 Connection to WMMSE Algorithm

The WMMSE algorithm originally derives from the signal inference [40, 41]. In what follows,

we give another derivation for WMMSE based on the proposed quadratic transform. Recall

that after the use of Lagrangian dual transform, the original objective function fo(s,v) is recast

to fr(s,v, γ), in which the primal variables s and v only appear in the last sum-of-ratio term.

Specifically, each ratio contained in the sum-of-ratio term of fr can be written as

dimvH
sim

HH
i,sim

B−1
imHi,simvsim , (4.37)
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where two new notations dim and Bim are introduced to simplify notation:

dim = wsim(1 + γsim) (4.38)

and

Bim = σ2IM +
∑

(j,n)

Hi,sjnvsjnv
H
sjn

HH
i,sjn

. (4.39)

Recall that in deriving the further reformulation of fq, we propose in Section 4.2.2 to apply

the multidimensional quadratic transform in Theorem 9 by identifying the ratio pattern of

(4.37) as

aHimB−1
imaim, (4.40)

where the vector numerator aim is recognized as

aim =
√

dimHi,simvsim . (4.41)

However, this is not the only way to implement the FP technique. In fact, we could have

applied the multidimensional quadratic transform to the ratios in a different way:

dim ·
(
ǎHimB−1

im ǎim

)
, (4.42)

where the numerator vector is newly recognized as

ǎim = Hi,simvsim . (4.43)

In this case, we would have arrived at a different reformulation f̌q as

f̌q(s,v, γ,y) =
∑

(i,m)

wsim

(
log(1 + γim)− γim + (1 + γim)

(
2ℜ
{
vH
sim

HH
i,sim

yim

}

− yH
im

(
σ2IM +

∑

(j,n)

Hi,sjnvsjnv
H
sjn

HH
i,sjn

)
yim

))
. (4.44)

This reformulation gives the following iterative algorithm for optimizing beamformers. Finding

the optimal y by solving ∂f̌q/∂yim = 0 with respect to each (i,m) pair amounts to

y̌im =

(
σ2IM +

∑

(j,n)

Hi,sjnvsjnv
H
sjn

HH
i,sjn

)−1

Hi,simvsim . (4.45)

Note that the above y̌im solution is exactly an MMSE receiver. Likewise, the optimal transmit
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beamformer is

v̌sim =

(
∑

(j,n)

djnH
H
j,sim

yjny
H
jnHj,sim + η⋆imIN

)−1

dimHH
i,sim

yim, (4.46)

where

η⋆im = inf
{
ηim ≥ 0 : ‖v̌sim(ηim)‖22 ≤ Pmax

}
(4.47)

is the optimal dual variable for the power constraint (4.16b) by complementary slackness.

Finally, the update of γ remains the same as in (4.20). When iteratively applying the above

updates of γ, v and y for the fixed scheduling variable s, we arrive at exactly the WMMSE

algorithm for beamforming. Therefore, WMMSE can be interpreted as a specific way of using

FP to solve the optimal beamforming problem.

However, unlike our proposed reformulation fq in (4.21), this f̌q does not allow an explicit

distributed solution for s, because the discrete variables si’s are not decoupled in the last term

of f̌q as shown in (4.44). While the FP-based method formerly proposed in this chapter is

able to use weighted bipartite matching to find the optimal s, the WMMSE algorithm can only

optimize the scheduling variable implicitly by optimizing beamformers for all the users in the

network. This implicit scheduling of WMMSE is not only more computationally complex, but

also has inferior performance as shown in the previous section.

4.5 Summary

This chapter explores the application of FP for the discrete (or mixed discrete-continuous)

problems. The central idea is to decouple the complicated interfering interactions among the d-

ifferent links by a novel quadratic transform and a Lagrangian dual transform, thereby allowing

efficient and distributed optimization. We illustrate the proposed FP approach by consider-

ing the uplink user scheduling, power control, and beamforming problem for wireless cellular

networks. By incorporating weighted bipartite matching, we devise a novel use of FP whereby

the discrete scheduling variables can be jointly optimized with the continuous variables such

as power and beamformers. As compared to the existing methods, the proposed FP approach

treats discrete optimization rigorously without relaxation. It is further shown that the WMMSE

algorithm is a particular form of FP, but in contrast to the proposed approach, WMMSE is not

well equipped to deal with discrete user scheduling variables.



Chapter 5

Matrix Optimization Problems

We have seen some applications of FP for optimizing the multidimensional variables in the

foregoing chapters, e.g., the multi-link energy efficiency maximization in a broadcast network

in Section 3.3 as well as the joint uplink scheduling and beamforming in Section 4.2, but they

all assume that the ratio term is a scalar-valued function of multidimensional variables. This

chapter goes further to account for the matrix-valued fractional function. We will start with

a multi-data-stream transmission scenario in which the SINR term has a matrix form; this

is a natural generalization of the aforementioned applications based on the scalar SINR. In

the second example, we propose to treat the channel estimation problem with a weighted sum

mean square error (MSE) minimizing objective as a matrix fractional program, then apply the

matrix version of the quadratic transform in Section 2.5.2. Moreover, making use of the matrix

Lagrangian dual transform, we relate the weighted MMSE of channel estimation to a weighted

sum-rate maximization problem.

5.1 Multi-Data-Stream Transmission in Flexibly Associated D2D

Networks

Interference management is a fundamental issue in D2D communications whenever the transmitter-

and-receiver pairs are located in close proximity and frequencies are fully reused, so active links

may severely interfere with each other. We put forward an optimization strategy named FPLinQ

to coordinate the link scheduling decisions among the interfering links, along with power con-

trol and beamforming. The key enabler is a novel optimization method called matrix FP that

generalizes previous scalar and vector forms of FP in allowing multiple data streams per link.

From an application perspective, it is shown that as compared to the existing methods for

coordinating scheduling in the D2D network, such as FlashLinQ, ITLinQ, and ITLinQ+, the

proposed FPLinQ approach is more general in allowing multiple antennas at both the trans-

mitters and the receivers, and further in allowing arbitrary and multiple possible associations

between the devices via matching.

73
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Figure 5.1: D2D network with white circles denoting the transmitters and black circles denoting
the receivers. In the fixed single association model (a), the transmitters have a fixed one-to-
one mapping to the receivers. This section considers a more general setting (b) in which each
transmitter has the flexibility of associating with one of multiple receivers, and each receiver
has the flexibility of associating with one of multiple transmitters.

5.1.1 Problem Formulation

Consider a wireless D2D network with a set of transmitters I and a set of receivers J . We

assume that each transmitter may have data to transmit to one or more receivers, and likewise

each receiver may wish to receive data from one or more transmitters. Thus, the communica-

tion scenario considered here is a generalization of traditional D2D network with fixed single

association between each pair of transmitter and receiver to a scenario with multiple possible

associations between the transmitters and the receivers as shown in Fig. 5.1. We assume that

in each scheduling time slot, each transmitter (or receiver) can only communicate with at most

one of its associated receivers (or transmitters)1, respectively, so that the mapping between the

transmitters and the receivers is one-to-one. The task of scheduling is to identify which set of

links over the network to activate in each slot. Further, we assume that the transmitters and

the receivers are each equipped with N antennas and permit multiple data streams to be carried

via MIMO transmission. The task of beamforming and power control is to design the transmit

beamformers for each of these multiple data streams in each active link in the scheduling slot.

Mathematically, letKj ⊆ I be the set of transmitters associated with each particular receiver

j ∈ J . Likewise, let Li ⊆ J be the set of receivers associated with each transmitter i ∈ I. Let
Hji ∈ C

N×N be the channel from transmitter i to receiver j in the scheduling slot. The joint

scheduling, beamforming, and power control problem can be written down as that of optimizing

two sets of variables: sj, the index of the transmitter scheduled at receiver j, and Vi ∈ C
N×N ,

the collection of beamforming vectors at transmitter i in each scheduling slot so as to maximize

some network wide objective function. Throughout this section, we assume that the channel

state information is completely known and network optimization is performed in a centralized

1Note that the D2D model considered here is more general than the traditional wireless cellular network
model of [33] in effectively allowing multiple and arbitrary associations between the base-stations and the mobile
terminals, but on the other hand, is also more restrictive in that it does not allow spatial multiplex at either the
receiver or the transmitter.
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manner. It is proved in [46,56] that this network optimization problem is NP-hard, even under

such idealized assumptions.

We use the weighted sum rate as the optimization objective in each scheduling slot, where

the weights are adjusted from slot to slot in an outer loop in order to maximize a network

utility of long-term average rates. We assume that interference is treated as noise, so that the

achievable data rate in each scheduling slot can be computed from the receiver’s perspective,

i.e., for each receiver j, as [57]

Rj = log
∣∣∣IN +VH

sj
HH

jsj
F−1
j HjsjVsj

∣∣∣ (5.1)

with the interference-plus-noise term

Fj = σ2IN +
∑

j′∈J \{j}

Hjsj′
Vsj′

VH
sj′

HH
jsj′

, (5.2)

where σ2 is the power of AWGN. Given a set of nonnegative weights wji ≥ 0, the optimization

problem is therefore

maximize
V, s

∑

j∈J

wjsjRj (5.3a)

subject to tr
(
VH

i Vi

)
≤ Pmax, ∀i ∈ I (5.3b)

sj ∈ Kj ∪ {∅}, ∀j ∈ J (5.3c)

sj 6= sj′ or sj = ∅, ∀j 6= j′, (5.3d)

where we have assumed a per-scheduling-slot and per-node power constraint Pmax and ∅ denotes

the decision of not scheduling any transmitter at receiver j. We remark that Hjsj , Vsj , and

wjsj are set to zero if sj = ∅. Constraint (5.3d) states that the same transmitter cannot

be scheduled for more than one receiver at a time, as required by the assumption that the

association between the transmitters and the receivers in the D2D network must be one-to-one.

Problem (5.3) involves a discrete optimization over s and a nonconvex continuous optimization

over V, which make it a challenging optimization problem. Below, we first review several

conventional approaches including the BCD algorithm and the greedy algorithms.

5.1.2 Existing Algorithms: FlashLinQ, ITLinQ, and ITLinQ+

We further examine the current state-of-the-art methods for D2D link scheduling in the litera-

ture: FlashLinQ [58], ITLinQ [59], and ITLinQ+ [60]. These works assume that each terminal

has a single antenna, and further that each transmitter (or receiver) is only associated with

one receiver (or transmitter) respectively, namely the fixed single association case shown in

Fig. 5.1(a).

Because deciding the on-off state for all the links at the same time is difficult, all three
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Algorithm 9: Sequential Link Selection

1 Initialize the set of activated links A to ∅;
2 for each link (i, j) do
3 if (i, j) does not “conflict” with any link in A then

4 Schedule link (i, j) and add it to A;

5 end

6 end

algorithms propose to schedule the links in a greedy fashion sequentially, as stated in Algorithm

9. The main difference between FlashLinQ [58], ITLinQ [59], and ITLinQ+ [60] lies in the

criterion for deciding whether the new link conflicts with already scheduled ones in Step 3 of

Algorithm 9.

The FlashLinQ scheme [58] applies a threshold θ to SINR, assuming that adding link i to

A does not cause conflict if and only if all the activated links have their SINRs higher than θ.

The performance of FlashLinQ is highly sensitive to the value of θ, but choosing θ properly can

be difficult in practice. Further, using the same θ for all the links is usually suboptimal when

the weight varies from link to link.

From an information theory perspective, a seminal study [61] on the multi-user Gaussian

interference channel provides a sufficient (albeit not necessary) condition for the optimality of

treating interference as noise (TIN) for maximizing the generalized degrees-of-freedom (GDoF)2

as follows:

log |hji| ≥ max
j′ 6=j

{
log |hj′i|

}
+max

i′ 6=i

{
log |hji′ |

}
, (5.4)

where hji ∈ C is the channel of the single-antenna case. We refer to this result as the TIN

condition.

The central idea of ITLinQ and ITLinQ+ is to schedule a subset of links that meet this

TIN condition. Because the TIN condition in (5.4) is often too stringent to activate sufficient

number of links, ITLinQ and ITLinQ+ both introduce relaxation based on design parameters.

Like FlashLinQ, the performance of ITLinQ and ITLinQ+ is heavily dependent on the choice

of design parameters, but they are difficult to choose optimally in practice. For example, [60]

adopts two different sets of parameters for ITLinQ+ for two different network models. It is often

not clear how to adapt ITLinQ and ITLinQ+ to the particular network environment of interest.

It is important to point out that the theoretical basis of ITLinQ and ITLinQ+, i.e., the TIN

condition, only helps decide whether for some particular schedule, treating interference as noise

is the optimal coding strategy from a GDoF perspective. It does not, however, guarantee that

if some schedule satisfies the TIN condition, then it must be the GDoF optimal schedule. Thus,

for a particular network, a schedule that does not satisfy the TIN condition can outperform

one that does. This subtle point is illustrated in the following example.

2GDoF is defined as limP→∞ R/ log(P ), where R is the data rate and P is the transmit power level.
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Figure 5.2: Power strength is P for each solid signal and is P 0.6 for each dashed signal. Thus,
the sum GDoF equals to 1 if only one link is on, and equals to 1.2 if all links are on.

Example 4 (Suboptimalilty of the TIN Condition for Scheduling). Consider three links as

shown in Fig. 5.2. Let the desired signal strength be P and interfering signal strength be P 0.6.

At most one link can be activated according to (5.4), so under the TIN condition, the total

GDoF ≤ 1. But, a higher sum GDoF of 1.2 can be achieved by simply activating all the links.

Therefore, the TIN condition does not guarantee even the GDoF optimality of a given

schedule. Considering further the significant gap between GDoF and the actual achievable

rate, ITLinQ and ITLinQ+ can often produce quite suboptimal solutions.

5.1.3 Proposed Algorithm FPLinQ

We propose to solve the joint scheduling and beamforming problem (5.3) iteratively by first

reformulating it by Corollary 5. Specifically, after specializing the variable x in (2.50) to be the

(V, s) in (5.3), we obtain the following reformulation:

Proposition 9. The joint beamforming and link scheduling problem (5.3) is equivalent to

maximize
s,V,Γ,Y

fq(s,V,Γ,Y) (5.5a)

subject to (5.3b), (5.3c), (5.3d)

Γj ∈ H
N×N
+ , ∀j (5.5b)

Yj ∈ C
N×N , ∀j, (5.5c)

where the new objective function fq is

fq(s,V,Γ,Y) =
∑

j∈J

(
wjsj log |IN + Γj | − wjsjtr

(
Γj

)
+ tr

(
(IN + Γj)

(
2
√
wjsj HjsjVsjY

H
j −

YH
j

(
Fj +HjsjVsjV

H
sj
HH

jsj

)
Yj

)))
(5.6a)

=
∑

j∈J

[
wjsj log |IN + Γj| − wjsjtr

(
Γj

)
+ tr

(
2
√
wjsj (IN + Γj)HjsjVsjY

H
j −

∑

j′∈J

(IN + Γj′)Y
H
j′ Hj′sjVsjV

H
sj
HH

j′sj
Yj′

)]
+
∑

j∈J

σ2YH
j (IN + Γj)Yj . (5.6b)
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Proof. The reformulating steps directly follow Corollary 5 in Section 2.5.2. We remark that fq

can be rewritten as in (5.6b), which enables an efficient optimization by matching.

We now address the new problem (5.5) in an iterative manner. First, when s and V are

both held fixed, the auxiliary variables Γ and Y can be optimally determined as

Γ⋆
j = VH

sj
HH

jsj
F−1
j HjsjVsj (5.7)

and

Y⋆
j =

(
Fj +HjsjVsjV

H
sj
HH

jsj

)−1√
wjsj HjsjVsj . (5.8)

We remark that the implicit constraints as stated in Theorem 11 are automatically satisfied by

the above optimal solution of the auxiliary variable Y⋆
j .

It remains to optimize the beamforming variable V and the scheduling variable s. The key

idea is to formulate the problem as a bipartite weighted matching problem. We consider the

objective function fq in (5.6b). The key observation is that the beamformer of each link (if it is

scheduled) can be optimally determined from fq, even without knowing the scheduling decisions

for the nearby links. To formalize this idea, let Ṽji be the tentative value of V⋆
i if link (i, j) is

scheduled. By completing the square in fq, we can compute Ṽji as

Ṽji =

(
µjiIN +

∑

j′∈J

HH
j′iYj′(IN + Γj′)Y

H
j′ Hj′i

)−1√
wjiH

H
jiYj(IN + Γj), (5.9)

where µji is a Lagrangian multiplier for the power constraint (5.3b), optimally determined as

µ⋆
ji = inf

{
µji ≥ 0 : tr(ṼH

ji Ṽji) ≤ Pmax

}
(5.10)

which can be computed efficiently by bisection search since Ṽji is monotonically decreasing

with µji. The solution Ṽji in (5.9) has the same structure as an MMSE beamformer.

We now turn to the question of which Ṽji should be chosen to be Vi so as to maximize fq.

This is akin to a scheduling step of choosing the best transmitter i for each receiver j. The key

is to recognize this question as a weighted bipartite matching problem:

maximize
q

∑

j∈J

∑

i∈Kj

λjiqji (5.11a)

subject to
∑

i∈Kj

qji ≤ 1, ∀j (5.11b)

∑

j∈Li

qji ≤ 1, ∀i (5.11c)

qji ∈ {0, 1}, ∀(i, j) (5.11d)

qji = 0 if i /∈ Kj or j /∈ Li, ∀(i, j), (5.11e)
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where the weight λji is evaluated as

λji = wji log |IN + Γj | − wjitr(Γj) + tr

(
2
√
wji (IN + Γj)Y

H
j HjiṼji−

∑

j′∈J

(IN + Γj′)Y
H
j′ Hj′iṼjiṼ

H
jiH

H
j′iYj′

)
, (5.12)

and qji is the matching variable between the associated transmitters and receivers. This weight-

ed bipartite matching problem can be solved optimally in polynomial time by using well-known

approaches such as the Hungarian algorithm [49] or the auction algorithm [48].

Note that (5.11) is typically a sparse matching problem, since most pairs of (i, j) ∈ I × J
are not associated, so the auction algorithm is likely to be more efficient than the Hungarian

algorithm. The matching variable qji indicates Vi should be set to which of the Ṽji. Mathe-

matically, V is recovered as

V⋆
i =

{
Ṽji, if qji = 1 for some j;

0, otherwise.
(5.13)

After updating V, the final step is to update the scheduling variable s for the fixed V. This

is again a weighted bipartite matching problem, but now since Vi is fixed, this amounts to

choosing the best receiver j for each transmitter i:

maximize
q

∑

i∈I

∑

j∈Li

wjirjiqji (5.14a)

subject to
∑

i∈Kj

qji ≤ 1, ∀j (5.14b)

∑

j∈Li

qji ≤ 1, ∀i (5.14c)

qji ∈ {0, 1}, ∀(i, j) (5.14d)

qji = 0 if i /∈ Kj or j /∈ Li, ∀(i, j), (5.14e)

where wjirji is the weighted achievable rate if the receiver j is scheduled for transmitter i under

fixed Vi. Note that since V is fixed, rij can be computed independently of the schedule, using

an expression similar to (5.1). This problem can again be solved in polynomial time. The

optimal schedule is then determined from the optimal qij as

s⋆j =

{
i, if qji = 1 for some i;

∅, otherwise.
(5.15)

We note that the reason for having two sets of matching is because we allow a general network

model in which each transmitter may associate with multiple receivers and each receiver may
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Algorithm 10: Proposed FPLinQ Strategy for D2D
Link Scheduling with Power Control and Beamforming

1 Initialize all the variables to feasible values;
2 repeat

3 Update Γ according to (5.7);

4 Update Y according to (5.27);

5 Update V according to (5.13);

6 Update s by weighted bipartite matching (5.15);

7 until the weighted sum rate converges;

associate with multiple transmitters. For simpler D2D model such as the one in Fig. 5.1(a),

these two matching steps would not have been necessary, as in [62].

Combining all the above steps together yields the FPLinQ strategy. Algorithm 10 summa-

rizes the overall approach.

A desirable trait of FPLinQ as compared to FlashLinQ, ITLinQ and ITLinQ+ is that no

tuning of design parameters is needed. But, FPLinQ is also somewhat more difficult to imple-

ment in a distributed fashion than FlashLinQ, ITLinQ, and ITLinQ+, because it additionally

requires the update of the auxiliary variables Γ and Y per iteration.

The convergence proof of Algorithm 10 follows that of Algorithm 3 in Section 3.1.3.

Proposition 10. The weighted sum rate across all the D2D links is nondecreasing after each

iteration of Algorithm 10, so the objective function of the optimization problem is guaranteed

to converge. Furthermore, at convergence, for fixed s, the solution V is a stationary point of

the problem (5.3).

Proof. The MM interpretation is used. Step 3 and step 4 of the algorithm is to construct the

surrogate functions; step 5 carries out the maximization stage of MM with respect to V, and

step 6 with respect to s. Since the optimization objective is nondecreasing and is bounded

above, Algorithm 10 must converge in objective value. When the discrete variable s is fixed,

the problem reduces to a differentiable continuous optimization and meets Theorem 6 in Section

2.3.1, convergence to stationary point thus verified.

5.1.4 Complexity Analysis

We now analyze the complexity of FPLinQ (i.e., Algorithm 10). We assume that there are

a total of L D2D links in the network; each transmitter/receiver is associated with a small

number (i.e., constant number) of neighboring devices, so that |I| = O(L) and |J | = O(L). To

ease the analysis, we assume that FPLinQ runs for a fixed number of iterations.

Communication Complexity: In each iteration of FPLinQ, each transmitter i requires the

tuple (Γ,Y, s) to update Vi, while every receiver j requires V to update Γj and Yj . Each

of Vi,Γj ,Yj is an N × N matrix. Further, the channel coefficients from O(L2) direct and
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interfering channels are needed, with each channel being an N × N matrix. Thus, the total

communication complexity of these updates is O(N2L2). The two matchings in Step 5 and Step

6 require the matching weights of all the links, thus introducing a communication complexity

of O(L). The overall communication complexity of FPLinQ is then O(N2L2). In the single-

antenna single-association case, the communication complexity of FPLinQ in each iteration is

O(L2); in comparison, the communication complexity of each step of FlashLinQ, ITLinQ, and

ITLinQ+ is also O(L2), as they all require the O(L2) channel coefficients.

Computational Complexity: We first consider the update steps of FPLinQ prior to matching,

which as analyzed in [33] has a per-iteration computational complexity of O(N4L2). The

matching step can be performed using the auction algorithm [48], which has a computational

complexity of O(L|I| log |I| + L|J | log |J |) = O(L2 log(L)). Thus, the overall per-iteration

computational complexity of FPLinQ is O(N4L2 + L2 log(L)). In the single-antenna single-

association case, the per-iteration computational complexity of FPLinQ reduces to O(L2 logL),

while the total computational complexities of FlashLinQ, ITLinQ, and ITLinQ+ are all equal

to O(L2).

We observe that the computational complexity of FPLinQ is sensitive to the number of

antennas N (mainly due to the matrix inverse). Overall, asymptotically, FPLinQ has the

same communication complexity, but higher computational complexity than the greedy based

approaches—FlashLinQ, ITLinQ, and ITLinQ+. Note that although the joint scheduling and

power control problem is NP-hard in general [46, 56], recent results nevertheless show that

scalable implementation is feasible for a metropolitan-scale network with thousands of terminals

[63,64]. In particular, [64] uses the scalar FP method of [23,33].

Table 5.1 displayed on the next page summarizes the comparison between the proposed

FPLinQ algorithm and the main benchmarks. The main advantage of FPLinQ is that it al-

lows for flexible association, guarantees convergence without needing tuning parameters, while

alleviating the potential pre-mature turn-off problem.
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Table 5.1: Comparison of Link Scheduling Algorithms for D2D Networks

FPLinQ FlashLinQ [58] ITLinQ [59] ITLinQ+ [60] BCD [38]

Scheduling & Association Flexible Single Single Single Flexible

Power Control ✓ ✗ ✗ ✓ ✓

Beamforming ✓ ✗ ✗ ✗ ✓

Tuning Parameters Not Needed Required Required Required Not Needed

Convergence with Fixed Schedule Stationary Point – – – Stationary Point

Computational Complexity O(L2(N4 + logL)) O(L2) O(L2) O(L2) O(L2(N4 + logL))

Communication Complexity O(N2L2) O(L2) O(L2) O(L2) O(N2L2)

Link Reactivation ✓ ✗ ✗ ✗ ✗
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Figure 5.3: Sum-rate maximization for the single-association D2D network.

5.1.5 Numerical Results

We validate the performance of FPLinQ through comparison with the benchmark methods

for a D2D network in a 1 km×1 km square area where the D2D links are randomly located.

Following [58–60], we adopt the short-range outdoor channel model ITU-1411 and use a 5 MHz-

wide frequency band centered at 2.4 GHz. Moreover, the antenna height of each device is 1.5 m;

the antenna gain is 2.5 dBi; the PSD of AWGN is −169 dBm/Hz; the noise figure is 7 dB; the

maximum transmit power is 20 dBm; the shadowing is modeled as a Gaussian random variable

in decibel with the standard deviation of 10; the distance between the transmitter and receiver

of each link is uniformly distributed between 2m and 65m.

The first simulation setting follows [58–60]: Given a set of links with single-antenna trans-

mitters/receivers and fixed single association (as shown in Fig. 5.1), the aim is to maximize the

sum rate across the links. We use FlashLinQ [58], ITLinQ [59], and ITLinQ [60] as benchmarks.

The BCD method is equivalent to FPLinQ in this single-association case. Because the bench-

mark methods do not have power control, for fair comparison, we modify FPLinQ slightly to

restrict the power to be either zero or the maximum, i.e., round each Vi to {0,√Pmax}. This

new version of FPLinQ without power control is referred to as “FPLinQ (no pc)”. Further, we

introduce two baselines: one is to activate all the links and the other is to activate the links

greedily to meet the TIN condition.

Fig. 5.3 shows the sum rate versus the total number of D2D links. Observe that ITLinQ+
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Figure 5.4: Log-utility maximization for the single-association D2D network.

outperforms ITLinQ, and ITLinQ outperforms FlashLinQ, as expected from the previous lit-

erature [59,60]. Without power control, FPLinQ (no pc) significantly outperforms FlashLinQ,

ITLinQ, and ITLinQ+, especially when the D2D links are densely located in the area. In par-

ticular, observe that Greedy TIN is even worse than simply scheduling all the links because it is

too conservative about the effect of interference. Further, as suggested in [60], we run ITLinQ+

and the power control algorithm (e.g., the WMMSE method) alternatively in order to account

for joint scheduling and power control; this method is referred to as “ITLinQ (pc)”. However,

the performance of ITLinQ+ with power control is still inferior to that of FPLinQ and even

that of FPLinQ (no pc).

The above simulation setting is only concerned with sum rate, as the weights are all set

to one. We now consider a more demanding setting that takes priority weights into account.

In this simulation, the weights are updated using the proportional fairness criterion, which

is equivalent to maximizing the log-utility of the average link rates in the long run [65]. The

network setting follows the previous simulation; the total number of links is fixed at 100. Fig. 5.4

compares the CDF of the link rates; the upper part of Table 5.2 compares the log-utility values.

As we can see in Fig. 5.4, FPLinQ (no pc) strikes a better balance between the high-rate regime

and the low-rate regime than ITLinQ and ITLinQ+. Surprisingly, FlashLinQ performs much

better than ITLinQ and ITLinQ+ in this simulation; its performance is even slightly better than

FPLinQ (no pc) according to Table 5.2. In particular, observe in Fig. 5.4 that the low-rate links

benefit the most from FlashLinQ, so FlashLinQ is fairly effective in protecting the low-rate links
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Figure 5.5: Log-utility maximization for the flexible-association D2D network.

from strong interference, but its threshold value must be chosen carefully. Further, the benefit

from the low-rate links comes at a cost for high-rate links. Overall, when we include power

control and compare FPLinQ with a new benchmark method that combines FlashLinQ and

power control in an alternative fashion, referred to as “FlashLinQ (pc)”, FPLinQ outperforms

FlashLinQ (pc) in network utility, when scheduling is optimized along with transmit powers,

as shown in Table 5.2 on the next page.

Finally, we consider the flexible association case. We first generate 100 disjoint D2D links as

before, but also generate two extra transmitters randomly for each receiver, and further let one

third of the transmitters connect with one additional geographically closest receiver (excluding

the already connected one). In this setup, we frequently encounter the situation that multiple

transmitters contend for the same receiver, so the premature turning-off problem is very likely

to occur. We again optimize the log-utility by updating the link weights according to the

proportional fairness criterion. FPLinQ is compared with the BCD method for both the single-

antenna case and the 2× 2 MIMO case (i.e., when each device terminal has 2 antennas). Note

that FlashLinQ, ITLinQ, and ITLinQ+ are not applicable here, because they do not handle

MIMO. Fig. 5.5 shows the CDF of link rates, and the lower part of Table 5.2 summarizes the

log-utility results. It can be seen that FPLinQ significantly outperforms BCD. In fact, as shown

in Fig. 5.5, FPLinQ improves upon the BCD method by more than 50% for the 50th percentile

link rate, in both the single-antenna case and the MIMO case. The corresponding log-utility of

FPLinQ is also much higher. These results show that the premature turning-off can be fairly
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Table 5.2: Sum Log-Utility over D2D Networks

Fixed Single Association Log Utility

FPLinQ 177.6

FPLinQ (no pc) 162.3

FlashLinQ 163.0

FlashLinQ (pc) 170.6

ITLinQ 57.0

ITLInQ+ 109.5

Flexible Association Log Utility

BCD (1× 1) 99.6

BCD (2× 2) 186.4

FPLinQ (1× 1) 139.3

FPLinQ (2× 2) 224.4

FPLinQ (4× 4) 298.9

FPLinQ (8× 8) 369.0

Vector FP (2× 2) 223.3

Vector FP (4× 4) 279.0

Vector FP (8× 8) 321.5

detrimental to the performance of D2D system in the flexible association case, thus making the

proposed FPLinQ strategy a preferred strategy.

One of the key advantages of the proposed matrix FP strategy is its ability to accommodate

multiple data streams in each MIMO link. In the next simulation, we evaluate the gain of mul-

tiple data-stream transmission over the single data-stream transmission. Toward this end, we

compare FPLinQ (with matrix FP) against the vector FP method (also called multidimensional

FP in [33]). The vector FP algorithm is the same as Algorithm 10 except that each transmit

beamformerVi ∈ C
N is a complex vector instead of a matrix, so at most one data stream can be

transmitted on each link. Fig. 5.6 shows the CDF of link rates under different MIMO settings.

It can be seen that while the gain of FPLinQ as compared to the vector FP is marginal in the

2 × 2 MIMO case, as more antennas are deployed at each terminal, the multiple data-stream

transmission by FPLinQ starts to significantly outperform. The above observations is also evi-

dent from the lower part of Table 5.2. Therefore, if the number of antenna N is small (e.g., 2),

then using the vector FP in Algorithm 10 is more suited because of its lower complexity; on the

other hand, if N is large (e.g., 8), then using FPLinQ with multiple data-stream transmission

can boost the overall network throughput significantly.

Finally, Fig. 5.7 shows the convergence speed of FPLinQ when maximizing the sum rate for

the flexible-association D2D network with 400 links. FPLinQ has fast convergence under all

the three MIMO settings. Taking the 2× 2 case for example, we observe from Fig. 5.7 that the

majority of sum rate increment is obtained after the first 10 iterations. Observe also that the

convergence of FPLinQ is slower when more antennas are deployed at each terminal. But, for

the 8×8 case in Fig. 5.7, we can already reap most of the rate gain after about 40-60 iterations.
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Vector FP.
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5.2 Nonorthogonal Pilot Design for Massive MIMO

Pilot contamination caused by the nonorthogonality of pilots is a main limiting factor in multi-

cell massive MIMO systems because it can significantly impair channel estimation. Following

the recent works of [66–68], our system model allows arbitrary sequences (under the power

and length constraints) to be used as pilots, while the prior works mostly assume orthogonal

pilots within the cell in order to eliminate the intra-cell interference in channel estimation. As

illustrated in Fig. 5.8, the orthogonal scheme3 precludes the interfering pilots from the home

cell, but it results in pilot contamination from the neighboring cells (when the same set of

orthogonal pilots are reused in each cell); in comparison, the nonorthogonal scheme provides

more flexibility to pilot design, thereby avoiding the high correlation with the desired pilot. This

section further investigates this approach using a new optimization framework. Specifically, we

reformulate the problem of minimizing the weighted MSE of channel estimation as a matrix-ratio

program that can be efficiently approximated as a sequence of convex optimizations via a matrix

fractional programming approach. The proposed algorithm, named coordinated nonorthogonal

pilot design (CNPD), provides fast convergence to a stationary point of the weighted MSE

objective. We further reveal a relation between rate maximization and MSE minimization,

which provides insights into the appropriate setting of weights in weighted MSE minimization.

5.2.1 Problem Formulation

Consider a total of L BSs each associated with K user terminals. We refer to the area occupied

by each BS and its user terminals as a cell. The full spectrum band is reused in every cell.

The BSs estimate the uplink channels based on the uplink pilots transmitted from the user

terminals. We seek a coordinated pilot design that minimizes the channel estimation error

throughout the network.

We use i or j to denote the index of each cell and its BS, and (i, k) the index of the kth user

in cell i. Assume that every BS has M antennas and every user terminal has a single antenna.

Let hj,ik ∈ C
M be the channel from user (i, k) to BS j, and let Hji ∈ C

M×K be the channel

matrix:

Hji =




| | |
hj,i1 hj,i2 · · · hj,iK

| | |


 . (5.16)

Following the previous works [66, 67], we model each channel Hji by using the Kronecker

structure with a partially separable correlation, i.e.,

Hji = Q
1

2

j GjiP
1

2

ji, (5.17)

where the receiver-side channel Qj ∈ C
M×M is a deterministic positive semidefinite matrix, the

3Here and throughout, the orthogonal scheme refers to using orthogonal pilots in the cell, but the pilot
orthogonality across cells is not guaranteed.
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(a) Orthogonal (b) Nonorthogonal

Figure 5.8: Orthogonal scheme vs. nonorthogonal scheme. Solid line is desired pilot and dashed
lines are interfering pilots; the width of dashed lines reflects the correlation with the desired
pilot.

large-scale channel strength Pji ∈ C
K×K is a deterministic diagonal PSD matrix

Pji = diag
[
βj,i1, βj,i2, . . . , βj,iK

]
(5.18)

with 0 ≤ βj,ik ≤ 1 between any pair of BS j and user (i, k), and the small-scale fading Gji ∈
C
M×K is a random matrix with i.i.d. entries distributed as CN (0, 1). We remark that a common

channel model as considered in [69] with Qj = IM for each j = 1, 2, . . . , L is a special case of

(5.17).

Assume that each pilot sequence consists of τ symbols. Let sik ∈ C
τ be the pilot sequence

transmitted from user (i, k), and further denote

Si =




| | |
si1 si2 · · · siK

| | |


 . (5.19)

Let sik[t] ∈ C be the tth symbol of the pilot sequence sik, i.e., sik = (sik[0], sik[1], . . . , sik[τ−1]).

The pilot signal received at BS i is

Vi = HiiS
⊤
i +

L∑

j=1,j 6=i

HijS
⊤
j + Zi, (5.20)

where Zi ∈ C
M×τ is additive noise with i.i.d. entries distributed as CN (0, σ2) for the fixed

noise power level σ2.

Upon receiving the uplink pilot signals from the users, each BS i estimates its Hii using the
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MMSE criterion from [66,67]. Let Ĥii be the MMSE estimate of Hii; it is determined as

vec
(
Ĥii

)
=
(
PiiS

H
i ⊗ IM

)(
Di ⊗ IM

)−1
vec
(
Vi

)
, (5.21)

where

Di = σ2Iτ +
L∑

j=1

SjPijS
H
j . (5.22)

The resulting MSE of user (i, k) is

MSEik = E
[
‖ĥi,ik − hi,ik‖2

]
, (5.23)

where ĥiik is the kth column of Ĥii. We aim to choose the pilot sequences to minimize the sum

of weighted MSEs, i.e.,

minimize

L∑

i=1

K∑

k=1

wikMSEik (5.24)

for a set of fixed nonnegative weights wik ≥ 0. For instance, we may set wik = 1 to minimize

the sum of MSEs as in [67], or wik = 1/βiik to minimize the sum of normalized MSEs as in [70].

For now, we focus on optimizing S for the fixed weights wik. Section 5.2.5 will discuss the

choice of wik for maximizing the achievable rate.

Following the steps in [67], we can formalize problem (5.24) as

maximize
S

L∑

i=1

αitr
(
WiPiiS

H
i D−1

i SiPii

)
(5.25a)

subject to ‖sik‖2 ≤ ρik, ∀(i, k), (5.25b)

where αi = tr(Qi), Wi = diag[wi1, wi2, . . . , wiK ], and ρik is the power constraint of user (i, k).

Problem (5.25) is a difficult optimization problem, because the choice of pilot sequences Si

appears in both the numerator and the denominator of a matrix fraction in (5.25a). The authors

in [67] propose a greedy sum of ratio traces maximization (GSRTM) algorithm to optimize each

row of Si sequentially. Here we suggest a matrix-FP approach to optimize the entire matrices

Si jointly. In addition, we illustrate via simulations that it leads to more accurate channel

estimation.

As studied in [66,67], the above problem formulation can be extended to the case of reduced

radio-frequency (RF) chains, i.e., when each BS i uses an RF chain combiner Ui ∈ C
N×M (for

N < M) to reduce the dimensionality of the received signal Vi. As already shown in [66, 67],

the weight αi in problem (5.25) then becomes tr(QiU
H
i (UiQiU

H
i )−1UiQi). Our work focuses

on optimizing the pilot variable S given the weights αi in (5.25), regardless of how each αi is

determined.
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5.2.2 Iterative Optimization by Matrix Fractional Programming

In light of Theorem 11 in Section 2.5.2, we can reformulate the weighted sum-MSE minimization

problem (5.25) as follows.

Proposition 11. The weighted sum MSE problem (5.25) is equivalent to

maximize
S,Y

L∑

i=1

αitr
(
Wi

(
2ℜ
{
PiiS

H
i Yi

}
−YH

i DiYi

))
(5.26a)

subject to ‖sik‖2 ≤ ρik, ∀(i, k) (5.26b)

Yi ∈ C
τ×K , ∀i, (5.26c)

where Yi is the auxiliary variable.

Proof. The new objective function (5.26a) is derived by treating SiP
H
ii and Di respectively as

Ai and Bi in Theorem 11 with fi(R) = αitr(WiR).

In the remainder of this section, we use yik to denote the kth column of Yi. To solve

problem (5.26) in Proposition 11, we propose to optimize S and Y alternatively. When S is

held fixed, each Yi can be optimally determined by completing the square for Yi in (5.26a),

i.e.,

Yi = D−1
i SiPii. (5.27)

Next, we optimize S for fixed Y. The key step is to rewrite the objective function (5.26a) in a

quadratic form with respect to each sik, as specified in the following proposition.

Proposition 12. The new objective function (5.26a) can be rewritten as

f(S,Y) =
∑

(i,k)

ξik + c(Y), (5.28)

where

ξik = 2ℜ{wikβi,iks
H
ikyik} − sHik

(
L∑

j=1

βj,ikYjWjY
H
j

)
sik (5.29)

and

c(Y) = σ2
L∑

i=1

tr
(
YH

i Yi

)
. (5.30)

Now, combining Proposition 12 with the power constraint (5.26b), we arrive at a Lagrangian

function for problem (5.26):

L(S,Y, λ) =
∑

(i,k)

(
ξik − λik

(
‖sik‖2 − ρik

))
+ c(Y), (5.31)
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Algorithm 11: Coordinated Nonorthogonal Pilot Design (CNPD)

1 Initialize all the variables to feasible values;
2 repeat

3 Update the auxiliary variable Y by (5.27);

4 Update the pilot variable S by (5.32) along with the
Lagrangian multiplier λik in (5.33), or by simultaneous scaling
as stated in Remark 3 when σ2 = 0;

5 until the variables (S,Y) converge;

where each λik is a Lagrangian multiplier for constraint (5.26b). By completing the square in

(5.31), the optimal sik is given by

sik =

(
L∑

j=1

βj,ikYjWjY
H
j + λikIτ

)−1

wikβi,ikyik, (5.32)

where λik is determined by the complementary slackness, i.e.,

λik =

{
0, if ‖sik‖2 ≤ ρik already;

λ⋆
ik > 0 such that ‖sik‖2 = ρik, otherwise.

(5.33)

For the second case of (5.33) wherein ‖sik‖2 = ρik, the optimal λ⋆
ik can be computed efficiently

by a bisection search because ‖sik‖2 in (5.32) is monotonically decreasing with λik > 0. When

Y is held fixed, maximizing the objective function (5.28) over S is a convex problem, so (S, λ)

obtained from (5.32) and (5.33) are jointly optimal from a Lagrangian dual theoretic perspective.

Remark 2. The above matrix-FP reformulating procedure mimics that of [71] until (5.27). But

a further reformulation in Proposition 12 is needed here in order to carry out the process of

completing the square. This is due to the difference in how Sj enters the objective function.

Remark 3. We show that the computation of sik can be further simplified in a special case.

When Zi is negligible (i.e., σ2 = 0), as shown in [67], the sum of weighted MSEs remains the

same if each pilot sik is multiplied by the same nonzero factor α. Thus, we can enforce the

power constraint (5.26b) by scaling all the sik’s (assuming that λik = 0) simultaneously with a

sufficiently small positive factor, instead of going through the computation of λik.

Algorithm 11 summarizes the overall approach. The following proposition analyzes its

convergence.

Proposition 13. The sum of weighted MSEs is monotonically nonincreasing per iteration in

CNPD; the pilot variable S converges to a stationary point of problem (5.25).

Proof. The iterative update in CNPD can be interpreted as a sequence of MM steps [30, 31].

Specifically, when Y is held fixed, S in (5.32) is the globally optimal solution that maximizes

f(S,Y) in (5.28), namely the maximization phase; when S is held fixed, f(S,Y) is less than or
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equal to the original objective in (5.26a), where the equality holds iff Y meets (5.27), namely

the minorization phase. The above proposition then directly follows by the property of the

MM algorithm [30,31].

We next compare CNPD with the GSRTM algorithm proposed in [67]. The main idea behind

GSRTM is to optimize one row of the matrix Si at a time while fixing all other rows. Because the

rows of Si are not optimized jointly in GSRTM, this greedy method is prone to being trapped

in a local optimum. Furthermore, it can be shown that CNPD has a computational complexity

scaling of O(τ3LKT ) where T is the number of iterations, while GSRTM has computational

complexity scaling of O(τ3L2K+τ4L), so that GSRTM is more sensitive4 to τ and L. Moreover,

the convergence property of GSRTM is difficult to analyze, whereas CNPD is guaranteed to

converge to a stationary-point solution.

5.2.3 Discrete Pilot Sequence Design

Arbitrary complex-valued pilot sequences may be difficult to implement in practice. In this

section, we restrict the choice of each pilot symbol to a 4-quadrature amplitude modulation

(QAM) constellation C = {ε(1 + j), ε(1 − j), ε(−1 + j), ε(−1 − j)} with a power control factor

ε =
√

ρ/2τ . Such sequences are referred to as discrete pilot sequences.

To design optimal discrete pilot sequences, we maximize the objective function f(S,Y) in

(5.31) for fixed Y (which has been updated by (5.27)) over the QAM-constellation as follows:

s′ik = arg min
s′∈Cτ

∥∥∥∥∥

(
L∑

j=1

βj,ikYjWjY
H
j

) 1

2 (
s′ − sik

)
∥∥∥∥∥, (5.34)

where sik has the same form as (5.32) but with λik = 0 (since there is no power constraint on

sik in this case); Cτ refers to a Cartesian power of set C. The projection of sik onto Cτ may be

computationally complex in practice as the size of Cτ grows exponentially with the pilot length

τ . Thus, we propose a suboptimal solution of simply rounding each sik[t] to C, i.e.,

s′ik[t] = ε · sgn(ℜ{sik[t]}) + j ε · sgn(ℑ{sik[t]}) (5.35)

where sgn(·) is the sign function. Observe that the heuristic in (5.35) amounts to s′ik =

argmins′∈Cτ ‖s′ − sik‖. As compared to (5.34), this heuristic is in essence assuming that

L∑

j=1

βj,ikYjWjY
H
j ≈ θIτ (5.36)

for some positive scalar θ > 0. According to our simulations, the above approximation is not

tight in general, but the resulting discrete pilot sequences are quite effective in reducing the

4Although T may increase with τ and L, we can stop CNPD early because of its monotonic improvement as
stated in Proposition 13.
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channel estimation error.

5.2.4 Achievable Data Rates

Due to the nonorthogonal pilots used for channel estimation, the conventional achievable rate

expression does not hold true in our massive MIMO system. Before proceeding to the fur-

ther optimization, we introduce three new achievable rate expressions that specialize in the

nonorthogonal pilot case:

(i) Instantaneous Ergodic Rate

Rik = E

[
log2

(
1 +

∥∥ĥi,ik

∥∥4ρ̃ik
∑

(j,ℓ)6=(i,k)

∣∣ĥH
i,ikhi,jℓ

∣∣2ρ̃jℓ + σ2
∥∥ĥi,ik

∥∥2 +
∣∣ĥH

i,ik(hi,ik − ĥi,ik)
∣∣2ρ̃ik

)]
.

(5.37)

(ii) Closed-Form Rate

R̃ik = log2

(
1+

M2µ2
ikρ̃ik

Mµik

∑
(j,ℓ) βi,jℓρ̃jℓ +M2β2

i,iks
H
ikD

−1
i · Fi

(
ρ̃
)
·D−1

i sik +Mµikσ2 −M2µ2
ikρ̃ik

)
.

(5.38)

where

µik = β2
i,iks

H
ikD

−1
i sik (5.39)

and

Fi

(
ρ̃
)
=

L∑

j=1

(
SjP

2
ij · diag

[
ρ̃j1, ρ̃j2, . . . , ρ̃jK

]
· SH

j

)
. (5.40)

(iii)Asymptotic Rate

R̃ik,∞ = log2

(
1 +

µ2
ikρ̃ik

β2
i,iks

H
ikD

−1
i · Fi

(
ρ̃
)
·D−1

i sik − µ2
ikρ̃ik

)
, when M → ∞. (5.41)

The derivations of the above three rate expressions are relegated to Appendix C. The closed-

form rate is used to approximate the ergodic rate, while The asymptotic rate is a simplification

of the closed-form rate when the number of antennas M at each BS is huge.

5.2.5 Rate-Aware Setting of MMSE Weights

This section aims to find a set of MSE weights wik in (5.24) that account for data rates. We

use the asymptotic rate in (5.41) throughout the discussion.

We first explore the relation between MSE minimization and rate maximization. The prima-

ry idea here is to rewrite the rate expression (5.41) in a weighted MSE form. By the Lagrangian
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dual transform in Theorem 8, the weighted sum rates maximization, with ηik ≥ 0 being the

rate weight of user (i, k), is recast into a new form:

maximize
S

∑

(i,k)

ηikR̃ik,∞ ⇐⇒ maximize
S, γ

∑

(i,k)

ηikTik, (5.42)

where

Tik = log(1 + γik)− γik +
(1 + γik)µ

2
ikρ̃ik

β2
i,iks

H
ikD

−1
i · Fi

(
ρ̃
)
·D−1

i sik
. (5.43)

The auxiliary variable γik can be interpreted as the signal-to-interference-and-noise ratio (SINR)

of user (i, k). It turns out that the optimal γik in (5.42) coincides with the real SINR in (5.41).

To make it tractable, we further assume that the data signal is stronger than any individual

interfering signal, i.e.,

βi,ikρ̃ik ≥ βi,jℓρ̃jℓ, ∀(i, k) and (j, ℓ). (5.44)

This is a reasonable assumption for a massive MIMO system with proper power control. Now,

assume the use of the channel inversion power control [72], the desired signals received at each

particular BS would be of the same strength, i.e.,

βi,ikρ̃ik = ̺i, for some ̺i ≥ 0. (5.45)

We then obtain an upper bound on Fi

(
ρ̃
)
as

Fi

(
ρ̃
)
=

L∑

j=1

(
SjP

2
ij · diag

[
ρ̃j1, ρ̃j2, . . . , ρ̃jK

]
· SH

j

)

� ̺i

L∑

j=1

(
SjPijS

H
j

)

= ̺iDi, (5.46)

which further leads to a lower bound on Tik:

Tik ≥ log(1 + γik)− γik +
(1 + γik)µ

2
ikρ̃ik

̺iβ2
i,iks

H
ikD

−1
i sik

= log(1 + γik)− γik +

(
1 + γik
βi,ik

)
µik. (5.47)

If the optimal auxiliary variables γ⋆ik are already determined, then the weighted sum-rate max-

imization problem in (5.42) can be convert to

maximize
S

∑

(i,k)

ηik

(
1 + γ⋆ik
βi,ik

)
µik (5.48)
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by using the lower bound (5.47) to approximate Tik. Contrasting (5.25) and (5.48) gives the

following strategy for setting the appropriate MSE weights:

wik = ηik

(
1 + γ⋆ik
βi,ik

)
. (5.49)

Now, the auxiliary variable γ⋆ik, which represents the optimal SINR of user (i, k), is unknown

a priori in general. To resolve this issue, we suggest some heuristic methods, e.g., (i) set γ⋆ik to

some target SINR; (ii) update γ⋆ik iteratively with S.

We further argue that in many cases, the exact γ⋆ik is not required. As shown in [72],

if the pilot contamination has been suppressed effectively, then the users from the same cell

would achieve similar data rates under the channel inversion power control ρ̃ik = δ/βi,ik for

some positive constant δ > 0. We further argue that this similarity in achievable rate holds

throughout the massive MIMO system, i.e., γ⋆ik ≈ γ⋆jℓ, for any (i, j, k, ℓ), so long as every cell

has a similar setup (e.g., cell size, channel condition, and user distribution). In this case, the

MSE weight in (5.49) is equivalent to

wik =
ηik
βi,ik

. (5.50)

Hence, the normalized MMSE scheme with wik = 1/βi,ik as suggested in [70] is suitable for

maximizing the sum rates under the channel inversion power control.

5.2.6 Numerical Results

We validate the performance of the proposed method in a 7-cell wrapped-around network. Each

cell consists of a 100-antenna BS located at the center and 9 single-antenna user terminals

uniformly distributed in a hexagonal area. The BS-to-BS distance is 1000 meters. Let τ = 16

and let ρik = 1. Following [66,67], we assume that the background noise is negligible and that

βj,ik = ϕj,ik/(dj,ik)
3 where ϕj,ik is an i.i.d. log-normal random variable according to N (0, ζ2)

with ζ = 8 dB and dj,ik is the distance between user (i, k) and BS i. In addition to the GSRTM

algorithm with a random dictionary (see [67]), we introduce two baseline methods as follows:

• Orthogonal Method: Pick nine out of sixteen fixed orthogonal pilots randomly per cell.

• Random Method: Generate the i.i.d. pilot symbols according to Gaussian distribution.

The orthogonal method is used to initialize CNPD. For data signals, we adopt the channel

inversion power control in [72], i.e., ρ̃ik = δ/βi,ik and we set δ = 1 without loss of generality.

Fig. 5.9 compares the sum of MSEs for the various methods. According to the figure, the

coordinated approach in CNPD reduces the sum of MSEs sharply as compared to the conven-

tional orthogonal method. Furthermore, around 75% of the sum-MSE reduction is obtained

after just 10 iterations. It can also be seen that the discrete pilot strategy already improves
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upon the baseline methods and GSRTM, albeit not by as much as the infinite precision coordi-

nated approach. Fig. 5.10 takes a closer look at the CDF of the MSE; the coordinated approach

outperforms all the other techniques by giving the smallest MSE in all the percentiles.

We now consider minimizing the sum of weighted MSEs across the network. Because the

absolute value of MSE is proportional to the channel magnitude, weighting MSEs equally would

give preference to the users with strong channels. To provide some measure of fairness, a possible

heuristic [70] is to weight the MSEs by wik = 1/βi,ik.

Fig. 5.11 shows a scatter plot of MSE vs. channel strength for this weighted coordinated

approach as compared to the sum-MSE version of CNPD and the orthogonal method. Although

the sum-MSE coordinated approach has considerable advantage over the orthogonal method

in minimizing the overall MSEs as shown in the previous results, its performance in the weak-

channel region (e.g., when βi,ik < −75 dB) is close to or even slightly worse than that of the

orthogonal method as shown in Fig. 5.11. The reason is that using the sum of MSEs as the

objective does not take into account the difference in channel strengths among the users, while

the weighted coordinated approach is able to improve the MSE for the cell-edge users (which

are more vulnerable to pilot contamination) at a slight cost to the cell-center users. Indeed, the

weighted coordinated approach is inferior to the orthogonal method when the channel strength

is very strong (βi,ik > −68 dB), but only a very small portion of users have such strong channels.

Thus, there is an overall benefit for the weighted coordinated approach.

Furthermore, we compare the data rates achieved by the different pilot strategies. We use

(5.37) to compute the instantaneous ergodic rate for each of the algorithms, and further use

(5.38) to obtain another achievable rate for the weighted CNPD. Since the spectrum bandwidth

is normalized in simulations, we also refer to data rate as spectral efficiency. Fig. 5.12 shows

the CDF of data rates. As shown in the figure, the weighted CNPD outperforms the other

methods significantly, especially in the low-rate regime. For instance, at the 10th percentile

point, the spectral efficiency of the weighted CNPD is at most five times higher than that of any

other algorithm. Observe also that the proposed closed-form rate is close to the instantaneous

ergodic rate. Note that for the weighted CNPD, these two types of achievable rates both have

the cumulative distribution curved as staircase. This is because under the channel inversion

power control, the users in the same cell ought to have similar SINRs if the pilot contamination

is sufficiently low, and then the cumulative distribution of data rates have 7 “jumps” across

the 7 cells; this observation agrees with the conclusion of [72]. This staircase phenomenon

however does not occur to the other methods because their channel estimations are not as

accurate. Observe also that the orthogonal method achieves higher throughput than the random

method and GSRTM, even though it has the worst performance in minimizing the sum of MSEs

according to Fig. 5.9. Hence, in terms of the data rate objective, the sum of MSEs may not

be a suitable metric for pilot design. Finally, we comment that the MSE weights ηik are set as

1/βi,ik. It possible to use (5.49) then iteratively update γik in setting the weights, but such a

strategy does not give appreciable further rate improvement.
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Figure 5.9: Sum of MSEs after each iteration.
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Figure 5.10: Cumulative distribution of MSEs.
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5.3 Summary

This chapter provides two typical examples of utilizing the matrix FP in the communication

system design. The first example is about interference-aware spectrum sharing in wireless D2D

networks. The problem setup differs from the joint scheduling and beamforming in Chapter 4

in that it assumes multi-layer transmissions on the same link and thus the SINR term has a

matrix form. This work proposes the so-called FPLinQ strategy to coordinate the scheduling

decisions along with beamforming and power control across the wireless D2D links. The key

step is to treat the weighted sum-rate maximization as a matrix FP problem and to use a

sequence of matrix FP transforms to allow iterative optimization of scheduling and beamform-

ing. In contrast to the existing methods, i.e., FlashLinQ, ITLinQ, and ITLinQ+, the proposed

method does not involve tuning of design parameters and does not suffer from the premature

turning-off problem. The second example studies the uplink pilot design for massive MIMO and

utilizes the matrix FP differently. Instead of the conventional orthogonal pilot sequences, we

advocate using the nonorthogonal pilot sequences to mitigate pilot contamination in a multi-

cell massive MIMO network. Based on the matrix FP, the proposed algorithm optimizes the

pilots iteratively in closed form, guaranteeing a monotonic reduction of the sum of weighted

MSEs of channel estimation throughout the network. Furthermore, we show a relation between

rate maximization and MSE minimization whereby the MSE weights can be properly chosen

according to the data rate objective.



Chapter 6

Conclusion

This thesis is intended to provide a unifying treatment of FP in communication system design.

While a series of recent works focus on using the classic Dinkelbach’s method for the single-ratio

problem such as the energy efficiency maximization, we propose a new FP technique named

the quadratic transform that is valid for a broad range of multi-ratio problems, along with a

Lagrangian dual transform devised for the logarithmic ratio problems. Furthermore, we gener-

alize the conventional scalar FP to a multidimensional space wherein the fractional term is of a

matrix form. A theoretical insight is that the proposed FP technique amounts to constructing

the so-called surrogate functions from an MM perspective. Equipped with these new tools, we

can examine many issues of communication system design in a new way, most of which have

not previously been examined from an FP perspective. The application subjects considered in

the thesis include the continuous optimization problems, discrete optimization problems, and

the matrix optimization problems. The continuous case is concerned with some typical applica-

tions of FP for optimizing continuous variables like transmit powers and beamforming vectors

in SINR. We choose the quadratic transform over the classic technique because of the multiple

ratios nested in logarithm. Different ways of using FP is discussed. In particular, the proposed

closed-form power control algorithm leads to a fixed-point iteration with provable convergence,

whereas the existing ones in the prior works cannot guarantee convergence in general. The

subsequent examples in the discrete part are less straightforward. These applications of FP for

uplink scheduling build on a novel idea of using the quadratic transform in conjunction with the

Lagrangian dual transform to recast the highly complicated integer program into a weighted bi-

partite matching. A remarkable fact about this approach is that it encompasses the well-known

WMMSE algorithm. We show that WMMSE can actually be recognized as a particular way of

ratio decoupling, and yet the way we advocate is more suited for discrete optimization. Next

comes the matrix part that further extends the continuous and discrete optimizations to higher

dimensions by assuming matrix-form ratios. The two application examples of this part both

involve multiple antennas: (i) Joint link scheduling and beamforming for multi-data-stream

transmission in a D2D network; (ii) nonorthogonal pilot sequence design for massive MIMO.
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Appendix A

Uniqueness of Quadratic Transform

We aim to show that the form of g(x, y) in (2.9) is necessary and sufficient when C4 is strength-

ened to require that ∂2g/∂y2 is independent of y. First, under the strengthened C4 and by C1,

function g must be of the form:

g(x, y) = f(A(x))(α2y
2 + α1y + α0) + h(B(x))(β2y

2 + β1y + β0) (A.1)

for some parameters αi and βi such that

∂2g(x, y)

∂y2
= 2α2f(A(x)) + 2β2h(B(x)) ≤ 0. (A.2)

For ease of notation, we omit the function arguments of A(x) and B(x) in the rest of the proof.

First, note that ∂2g(x, y)/∂y2 cannot be zero, as otherwise maxy g(x, y) = ∞ and thus C3

cannot be satisfied. Given a particular x, the maximum value of g(x, y) over y can now be

obtained in closed form as

max
y

g(x, y) = α0f(A) + β0h(B)− (α1f(A) + β1h(B))2

4(α2f(A) + β2h(B))
. (A.3)

As required by C3, we must have maxy g(x, y) = A/B. One way to satisfy this relation is to

have α0 = 0, β0 = 0, α1 = 2, β1 = 0, α2 = 0, β2 = 1, f(A) =
√
A, and h(B) = B. This gives

the proposed quadratic transform (2.8). The remainder of the proof aims to show that a more

general form of this solution (2.9) is the unique solution satisfying the above.

The main idea is to determine functions f and h as well as parameters αi and βi by sub-

stituting different (A,B) pairs in (A.3). First, put A = 0 (so A(x) is a zero constant function)

then maxy g = A/B = 0 for any B, i.e.,

(4β0β2 − β2
1)h

2(B) + (4α2β0 + 4α0β2 − 2α1β1)f(0)h(B) + (4α0α2f
2(0)− α2

1f
2(0)) = 0. (A.4)

103



Appendix A. Uniqueness of Quadratic Transform 104

For this to hold for any B, we must have

4β0β2 − β2
1 = 0. (A.5)

In this case, the expression (A.3) reduces to

max
y

g(x, y) =
C

D
, (A.6)

where

C = (4α0α2 − α2
1)f

2(A) + (4α0β2 + 4α2β0 − 2α1β1)f(A)h(B) (A.7)

and

D = 4(α2f(A) + β2h(B)). (A.8)

Second, consider the case that B → 0+, then maxy g(x, y) = A/B = ∞ for any A 6= 0. For this

to happen, we need D → 0 for any A, whenever B → 0+. This means that the first term in D,

which is a function of A only, must be zero, or

α2 = 0. (A.9)

Third, consider the case that A → 0+, then maxy g(x, y) = A/B = 0 for any B. For this to

happen, we need C → 0 for any B, whenever A → 0+. This means that the second term in C,

which is a function of B must be zero. Since f(A) cannot be a constant zero, we must have

4α0β2 + 4α2β0 − 2α1β1 = 4α0β2 − 2α1β1 = 0. (A.10)

The maxy g(x, y) expression now becomes

max
y

g(x, y) = −α2
1f

2(A)

4β2h(B)
. (A.11)

It can be readily seen that for it to be equal to A/B, we must have

f(A) = s1
√
A (A.12)

and

h(B) = s2B (A.13)

for some nonzero (s1, s2) such that

−α2
1s

2
1 = 4β2s2. (A.14)

Summarizing, g(x, y) must have this form:

g(x, y) = s1(α1y + α0)
√

A(x) + s2(β2y
2 + β1y + β0)B(x) (A.15)
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subject to (A.5), (A.10) and (A.14). Using (A.5), (A.10) and (A.14), i.e.,





β2
1 = 4β0β2

2α0β2 = α1β1

− α2
1s

2
1 = 4β2s2,

(A.16)

we obtain

β2 = −α2
1s

2
1

4s2
, β1 = −α1α0s

2
1

2s2
, β0 = −α2

0s
2
1

4s2
. (A.17)

With the above identities substituted in (A.1) to get rid of βi’s, the reformulation g(x, y)

becomes

g(x, y) = s1(α1y + α0)
√

A(x)− s21(α1y + α0)
2

4
B(x). (A.18)

The above form of g(x, y) can be rewritten as (2.9) by defining two new parameters: t1 = s1α1/2

and t2 = s1α0/2. Finally, we note that g(x, y) in (2.9) satisfies the strengthened C1-C4 when

t1 6= 0. This form of g(x, y) is therefore necessary and sufficient for this set of conditions.



Appendix B

Pseudoconvex Function

The definition of pseudoconvex function is presented here:

Definition 3. A differentiable function f : Rd 7→ R is said to be pseudoconvex on the convex

compact constraint set C if

f(x) < f(y) implies ∇f(y)⊤(x− y) < 0, ∀x,y ∈ C. (B.1)

Moreover, −f(x) is said to be pseudoconcave provided that f(x) is pseudoconvex.

In general, the above pseudoconvex condition is less strict than the convex condition, and

yet stricter than the quasiconvex condition, i.e.,

Convex Functions ⊂ Pseudoconvex Functions ⊂ Quasiconvex Functions.

From an optimization perspective, the following critical property of the pseudoconvex func-

tion, first shown in [73], is what distinguishes it from the quasiconvex function:

Theorem 15. Some point x⋆ is a local minimum of the pseudoconvex function f(x) if and only

if x⋆ is a stationary point.

Roughly speaking, the gradient of some pseudoconvex function would not vanish unless at

the local (or global) optimum. This is in contrast to the quasiconvex function whose stationary

point is not necessarily a local (or global) optimum. Fig. B.1 displayed on the next page gives

an example to illustrate this point.

Proposition 14. A concave-convex single-ratio objective function A(x)/B(x) is pseudoconcave.

Proof. Recall that the concave-convex condition implies that A(x) is a concave function while

B(x) is a convex function. Hence, given any two points x1,x2, we have

A(x1) ≤ A(x2) +∇A(x2)
⊤(x1 − x2), (B.2a)

B(x1) ≥ B(x2) +∇B(x2)
⊤(x1 − x2). (B.2b)
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Figure B.1: Convex function f1(x) = x2, pseudoconvex function f2(x) = x+x3, and quasiconvex
function f3(x) = x5. Observe that (0, 0) is a stationary point of f3 but not its local minimum,
namely inflection point.

Without loss of generality, let us assume that

A(x1)

B(x1)
≤ A(x2)

B(x2)
. (B.3)

We then have

(
∇A(x2)

B(x2)

)⊤

(x1 − x2) =

(∇A(x2) · B(x2)−A(x2) · ∇B(x2)

B2(x2)

)⊤

(x1 − x2) (B.4a)

(a)

≥ B(x2)(A(x1)−A(x2)) +A(x2)(B(x2)−B(x1))

B2(x2)
(B.4b)

=
B(x2)A(x1)−A(x2)B(x1)

B2(x2)
(B.4c)

(b)
> 0, (B.4d)

where (a) follows by (B.2) and (b) follows by (B.3). The pseudoconcavity is thus verified.



Appendix C

Data Rates of Massive MIMO with

Nonorthogonal Pilots

The conventional rate expression for massive MIMO does not apply to our case in Section 5.2

because of the nonorthogonal pilots. Our achievability analysis rests on two special assumptions.

First, the data signal symbol xik of each user (i, k) has an i.i.d. Gaussian distribution CN (0, 1).

Second, each BS i multiplies the received signal of user (i, k) with the complex conjugate of

its channel estimate ĥi,ik, namely maximum-ratio combining (MRC). Let ρ̃ik be the transmit

power of the data signal of user (i, k), so the received signal at the target BS i after MRC is

ṽik = ĥH
i,ik

(
∑

(j,ℓ)

√
ρ̃jℓhi,jℓxjℓ + z̃ik

)

=
√

ρ̃ik‖ĥi,ik‖2xik + ĥH
i,ik

(
∑

(j,ℓ)6=(i,k)

√
ρ̃jℓhi,jℓxjℓ

)

+ ĥH
i,ik

(
z̃ik +

√
ρ̃ik(hi,ik − ĥi,ik)xik

)
, (C.1)

where z̃ik ∼ CN (0, σ2IM ) is an i.i.d. additive Gaussian noise of the data transmission phase.

Moreover, a simplified form of ĥi,ik is show in the following lemma.

Lemma 1. The MMSE estimate of channel hi,ik can be rewritten as

ĥi,ik = βi,ikViD̄
−1
i s̄ik. (C.2)

Proof. The right-hand side of (5.21) can be rewritten as

(
PiiS

H
i ⊗ IM

)(
Di ⊗ IM

)−1
vec
(
Vi

) (a)
=
(
PiiS

H
i ⊗ IM

)(
D−1

i ⊗ IM
)
vec
(
Vi

)

(b)
=
((

PiiS
H
i IM

)
⊗ IM

)
· vec

(
Vi

)

(c)
= vec

(
Vi

(
PiiS

H
i D−1

i

)⊤)
, (C.3)
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where (a) follows as (A⊗B)−1 = A−1 ⊗B−1, (b) follows since (A⊗B) · (A′ ⊗B′) = (AA′)⊗
(BB′), and (c) is a result of (A⊤ ⊗ B) · vec(C) = vec(ACB). The identity in (C.2) is thus

established.

C.1 Instantaneous Ergodic Rate

By treating interference as noise, we obtain an achievable data rate as

Rik = E

[
log2

(
1 +

∥∥ĥi,ik

∥∥4ρ̃ik
∑

(j,ℓ)6=(i,k)

∣∣ĥH
i,ikhi,jℓ

∣∣2ρ̃jℓ + σ2
∥∥ĥi,ik

∥∥2 +
∣∣ĥH

i,ik(hi,ik − ĥi,ik)
∣∣2ρ̃ik

)]
(C.4)

for each user (i, k), where the expectation is taken over the random fadings {hi,jℓ,∀(i, j, ℓ)} for

a large number of coherence intervals with independent small-scale fading. The pilots affect Rik

through ĥi,ik. Following [74], we refer to the above Rik as the instantaneous ergodic rate. As

pointed out in [74], the instantaneous ergodic rate is hard to interpret because of the expectation

outside the logarithm, e.g., it is hard to tell whether an increment of ρ̃ik can enhance the sum

rates or not.

C.2 Closed-Form Rate

We now derive a more interpretable achievable rate expression that does not include this ex-

pectation over time, that is

R̃ik = log2

(
1 +

M2µ2
ikρ̃ik

Mµik

∑
(j,ℓ) βi,jℓρ̃jℓ +M2β2

i,iks
H
ikD

−1
i · Fi

(
ρ̃
)
·D−1

i sik +Mµikσ2 −M2µ2
ikρ̃ik

)

(C.5)

with

µik = β2
i,iks

H
ikD

−1
i sik (C.6)

and

Fi

(
ρ̃
)
=

L∑

j=1

(
SjP

2
ij · diag

[
ρ̃j1, ρ̃j2, . . . , ρ̃jK

]
· SH

j

)
. (C.7)

We give a step by step procedure to derive the above rate expression.

Step 1: Artificial Channel Gain

Note that we have to average the rate expression in (5.37) because the effective channel gain

‖ĥi,ik‖2 used in (C.1) depends on each realization of hi,ik which varies over time. The main

step of our approach is to replace ‖ĥi,ik‖2 with an artificial channel gain

h̃i,ik = E
[
ĥH
i,ikhi,ik

]
, (C.26)
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which reflects the average effective channel gain when the MMSE estimate ĥi,ik is used; observe

that h̃i,ik is fixed over time. It can be shown that the randomness caused by the small-scale

fading can all be encompassed in h̃i,ik, so the resulting data rate is a deterministic function of

the large-scale fading, as stated in the following theorem.

Inspired by the decoding method (under the orthogonal scheme) in [75], we rewrite the

received signal after the MRC processing as

ṽik =
√

ρ̃ikh̃i,ikxik +∆ik, (C.27)

where

∆ik =
∑

(j,ℓ)

√
ρ̃jℓĥ

H
i,ikhi,jℓxjℓ + ĥH

i,ikz̃ik −
√
ρ̃ikh̃i,ikxik. (C.28)

In (C.27), we express the received signal ṽik as if xik passed through the known channel h̃i,ik.

(Note that the BS knows h̃i,ik, although it is not aware of every realization of hi,ik.). Further,

due to the fact that E[(h̃ikxik)
H∆ik] = 0 with the expectation taken over (H,Z, x, z̃), ∆ik can

be recognized as an uncorrelated noise added to the desired signal
√
ρ̃ikh̃i,ikxik. The early

work [76] shows that the worst-case uncorrelated additive noise under a variance constraint has

a Gaussian distribution. Henceforth, with respect to (C.27), a lower bound on the achievable

data rate of user (i, k) is

R̃ik = log2

(
1 +

ρ̃ikE
[
|h̃i,ikxik|2

]

E
[
|∆ik|2

]
)
, (C.29)

where the expectation of |h̃i,ikxik|2 is taken over xik while the expectation of |∆ik|2 is taken

over (H,Z, x, z̃). It remains to compute E
[
|h̃i,ikxik|2

]
and E[|∆ik|2], both of which depend on

the MMSE channel estimation ĥi,ik.

Step 2: Computation of E
[
|h̃i,ikxik|2

]
in (C.29)

Note that the virtual channel h̃i,ik is deterministic. Using the simplified form of ĥi,ik in Lemma

1, we can evaluate h̃i,ik as

h̃i,ik = E
[
ĥH
i,ikhi,ik

]

= E
[
βi,iks

⊤
ikD̄

−1
i VH

i hi,ik

]

= E

[
βi,iks

⊤
ikD̄

−1
i

(
L∑

j=1

S̄jH
H
ij + ZH

i

)
hi,ik

]

= Mβ2
i,iks

⊤
ikD̄

−1
i s̄ik

= Mβ2
i,iks

H
ikD

−1
i sik

= Mµik, (C.30)
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where the expectation is taken over H. We then commutate the numerator of the SINR term

in (C.29) by taking expectation over x:

E
[
|h̃i,ikxik|2

]
= |h̃i,ik|2 · E

[
|xik|2

]
= M2µ2

ik. (C.31)

Step 3: Computation of E
[
|∆ik|2

]
in (C.29)

Recall that the interference-plus-noise strength E
[
|∆ik|2

]
in (C.29) is the expectation over the

random variables (H,Z, x, z̃). We expand E
[
|∆ik|2

]
as follows:

E
[
|∆ik|2

]
= E

[∣∣∣∣∣
∑

(j,ℓ)

√
ρ̃jℓĥ

H
i,ikhi,jℓxjℓ + ĥH

i,ikz̃ik −
√

ρ̃ikh̃i,ikxik

∣∣∣∣∣

2]

(a)
=
∑

(j,ℓ)

ρ̃jℓE
[
|ĥH

i,ikhi,jℓ|2
]
+ σ2

E
[
‖ĥi,ik‖2

]
− ρ̃ikE

[
|h̃i,ikxik|2

]
, (C.32)

where (a) follows by taking expectation over (x, z̃). The first term of (C.32), we start with each

expected channel strength after the MRC processing, that is

E
[
|ĥH

i,ikhi,jℓ|2
]
= E

[
ĥH
i,ikhi,jℓh

H
i,jℓĥi,ik

]

= E
[
β2
i,iks

⊤
ikD̄

−1
i VH

i hi,jℓh
H
i,jℓViD̄

−1
i s̄ik

]

= β2
i,iks

⊤
ikD̄

−1
i · E

[
VH

i hi,jℓh
H
i,jℓVi

]
· D̄−1

i s̄ik

= β2
i,iks

⊤
ikD̄

−1
i · E

[
L∑

j′=1

S̄j′H
H
ij′hi,jℓh

H
i,jℓHij′S

⊤
j′ +Mβi,jℓIτ

]
· D̄−1

i s̄ik, (C.33)

where the expectation part in the middle can be further computed as

E

[
L∑

j′=1

S̄j′H
H
ij′hi,jℓh

H
i,jℓHij′S

⊤
j′ +Mβi,jℓIτ

]

= Mβi,jℓ

(
L∑

j′=1

S̄j′Pij′S
⊤
j′ + Iτ

)
+M2S̄j · diag

[
0, . . . , 0,︸ ︷︷ ︸
(ℓ− 1) zeros

β2
i,jℓ, 0, . . . , 0︸ ︷︷ ︸

(K − ℓ) zeros

]
· S̄⊤

j

= Mβi,jℓD̄i +M2S̄j · diag
[
0, . . . , 0, β2

i,jℓ, 0, . . . , 0
]
· S⊤

j . (C.34)

The substitution of (C.33) and (C.34) into the first term of (C.32) yields

∑

(j,ℓ)

ρ̃jℓE
[
|ĥH

i,ikhi,jℓ|2
]

=
∑

(j,ℓ)

Mβ2
i,ikβi,jℓρ̃jℓs

⊤
ikD̄

−1
i s̄ik +

L∑

j=1

(
M2β2

i,iks
⊤
ikD̄

−1
i S̄jdiag

[
β2
i,j1ρ̃j1, . . . , β

2
i,jK ρ̃jK

]
S⊤
j D̄

−1
i s̄ik

)
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=
∑

(j,ℓ)

Mβ2
i,ikβi,jℓρ̃jℓs

H
ikD

−1
i sik +

L∑

j=1

(
M2β2

i,iks
H
ikD

−1
i Sjdiag

[
β2
i,j1ρ̃j1, . . . , β

2
i,jK ρ̃jK

]
SH
j D−1

i sik

)

= Mµik

∑

(j,ℓ)

βi,jℓρ̃jℓ +M2β2
i,iks

H
ikD

−1
i · Fi

(
ρ̃
)
·D−1

i sik. (C.35)

The second term of (C.32) can be computed as

σ2
E
[
‖ĥi,ik‖2

]
= σ2

E
[
ĥH
i,ikĥi,ik

]

= σ2
E
[
β2
i,iks

⊤
ikD̄

−1
i VH

i ViD̄
−1
i s̄ik

]

= σ2Mβ2
i,iks

⊤
ikD̄

−1
i

(
L∑

j=1

S̄jPijS
⊤
j + σ2Iτ

)
D̄−1

i s̄ik

= σ2Mβ2
i,iks

⊤
ikD̄

−1
i s̄ik

= Mµikσ
2. (C.36)

Observe that the last term of (C.32) is already obtained from (C.31). Finally, combining

(C.32), (C.36), and (C.35) along with (C.31) establishes the achievability of the proposed data

rate in (5.38).

C.3 Asymptotic Closed-Form Rate

Recall that

R̃ik,∞ = log2

(
1 +

µ2
ikρ̃ik

β2
i,iks

H
ikD

−1
i · Fi

(
ρ̃
)
·D−1

i sik − µ2
ikρ̃ik

)
, when M → ∞. (C.37)

The nonorthogonality of pilots comes into (C.37) through D−1
i · Fi

(
ρ̃
)
· D−1

i which would

be a diagonal matrix if the pilots are orthogonal. Furthermore, (5.41) reduces to well-known

results if τ ≥ K and the same set of orthogonal pilots {s⊥1 , s⊥2 , . . . , s⊥K} is reused in each cell.

In this case, the above R̃ik,∞ reduces to

R̃ik,∞ = log2

(
1 +

β2
i,ikρ̃ik∑

j 6=i β
2
i,κ(j,ik)ρ̃κ(j,ik)

)
, (C.38)

where κ(j, ik) outputs the index of the user in cell j assigned the same pilot sequence as user

(i, k). We remark that the asymptotic rate in (C.38) is a well-known result in the massive

MIMO literature [69,77].
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