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Abstract—Fractional programming (FP) arises in various com-
munications and signal processing problems because several
key quantities in the field are fractionally structured, e.g., the
Cramér-Rao bound, the Fisher information, and the signal-to-
interference-plus-noise ratio (SINR). A recently proposed method
called the quadratic transform has been applied to the FP
problems extensively. The main contributions of the present
paper are two-fold. First, we investigate how fast the quadratic
transform converges. To the best of our knowledge, this is the
first work that analyzes the convergence rate for the quadratic
transform as well as its special case the weighted minimum
mean square error (WMMSE) algorithm. Second, we acceler-
ate the existing quadratic transform via a novel use of Nes-
terov’s extrapolation scheme [2]. Specifically, by generalizing the
minorization-maximization (MM) approach in [3], we establish a
nontrivial connection between the quadratic transform and the
gradient projection, thereby further incorporating the gradient
extrapolation into the quadratic transform to make it converge
more rapidly. Moreover, the paper showcases the practical use
of the accelerated quadratic transform with two frontier wireless
applications: integrated sensing and communication (ISAC) and
massive multiple-input multiple-output (MIMO).

I. OVERVIEW

Fractional programming (FP) aims at the optimization of
ratio terms. This paper focuses on the following type of ratio:

Mi =
(
Aixi

)H( n∑
j=1

Bijxjx
H
j B

H
ij

)−1(
Aixi

)
, (1)

with the variable x = {xj ∈ Cd} and the matrix coefficients
{Ai ∈ Cℓ×d,Bij ∈ Cℓ×d}, for i, j = 1, . . . , n. The above ra-
tio term is of significant research interest not only because it is
a natural extension of the Rayleigh quotient, but also because
several key metrics in information science can be written in
this form, e.g., the Cramér-Rao bound, Fisher information, and
signal-to-interference-plus-noise ratio (SINR).

The quadratic transform [4], [5] is a state-of-the-art tool for
FP. Its main idea is to decouple each ratio term and thereby
reformulate the FP problem as a quadratic program that can be
addressed efficiently (and often in closed form) in an iterative
manner. As shown in [5], the quadratic transform has a con-
necting link to the minorization-maximization (MM) theory
[6], [7], so it immediately follows that the quadratic transform
method guarantees monotonic convergence to some stationary
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point provided that the original problem is differentiable. In
particular, [8] shows that the well-known weighted minimum
mean square error (WMMSE) algorithm [9], [10] boils down
to a special case of the quadratic transform method; [8] further
proposes a better way of applying the quadratic transform than
WMMSE when dealing with discrete variables.

Despite the extensive studies on the quadratic transform,
its convergence rate (even for the WMMSE case) remains a
complete mystery, with the following open problems:

i. How fast does the quadratic transform converge?
ii. How is it compared to the conventional gradient method?

iii. Can we further accelerate the quadratic transform?
Our answers are: when the starting point is sufficiently close
to a strict local optimum, the quadratic transform yields an
objective-value error bound of O(1/k), where k is the iteration
index; it is faster than the gradient method in iterations, but
slower in time; the error bound can be further reduced to
O(1/k2) by incorporating Nesterov’s extrapolation [2].

As a special case of the quadratic transform, the WMMSE
algorithm [9], [10] has been extensively considered in the
literature for its own sake because of the weighted sum-
of-rates (WSR) maximization problem in wireless networks.
The computational complexity is a major bottleneck of the
WMMSE algorithm because it requires computing matrix
inverse frequently. Assuming that the channel matrices are
all full row-rank, the recent work [11] takes advantage of
the WSR problem structure to facilitate the matrix inverse
computation. The more recent work [3] goes further: it does
not require any channel assumptions and yet can get rid of
the matrix inverse operation completely. The main contribution
of the present work is to extend the results in [3], [12] to a
broad range of FP problems (not limited to the WSR problem).
Moreover, another recent work [13] suggests combining Nes-
terov’s extrapolation and WMMSE in a heuristic way, but its
proposed algorithm still involves the matrix inverse operation
and cannot provide any performance guarantee.

II. PRELIMINARY

Consider a total of n ratio terms, each written as in (1). The
weighted sum ratios problem is

maximize
x

fo(x) :=

n∑
i=1

ωiMi (2a)

subject to xi ∈ Xi, i = 1, . . . , n, (2b)
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Algorithm 1 Conventional Quadratic Transform [4]
1: initialize x to a feasible value
2: repeat
3: update each yi according to (3)
4: update each xi according to (4)
5: until the value of fo(x) converges

Algorithm 2 Nonhomogeneous Quadratic Transform
1: initialize x to a feasible value
2: repeat
3: update each zi according to (9)
4: update each yi according to (3)
5: update each xi according to (10)
6: until the value of fo(x) converges

where each weight ωi > 0 and Xi is a nonempty convex set.
By the quadratic transform [4], the original objective fo(x)

can be recast to

fq(x,y) =

n∑
i=1

ωi

[
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where ℜ{·} indicates the real part of a complex number.
The benefit of adopting this new objective is that the primal
variable x and the auxiliary variable y can be efficiently
optimized in an alternating fashion. When x is held fixed,
each yi is optimally updated as

y⋆
i =

(
n∑
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)−1(
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)
. (3)

When y is held fixed, the optimal xi is given by

x⋆
i = arg min

xi∈X

∥∥D 1
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2
, (4)

where

Di =

n∑
j=1

ωjB
H
jiyjy

H
j Bji. (5)

Algorithm 1 summarizes the above steps. As shown in [5], Al-
gorithm 1 guarantees a monotonically increasing convergence
to a stationary point of problem (2).

III. MAIN RESULTS

A. Matrix Inverse Elimination

As a long-standing issue with the above alternating method
(and also with the WMMSE algorithm [9], [10]), the computa-
tion in (4) can be quite costly when Di is a large matrix, e.g.,
when applied to the massive MIMO network. Our first result
is to get rid of the matrix inverse for the quadratic transform-
based iterative optimization.

Lemma 1 (Nonhomogeneous Bound [7]): Suppose that the
two Hermitian matrices L,K ∈ Cd×d satisfy the condition
L ⪯ K. Then for any two vectors x, z ∈ Cd, one has

xHLx ≤ xHKx+2ℜ{xH(L−K)z}+ zH(K −L)z, (6)

projection onto an ellipsoid projection onto a sphere

Fig. 1. The conventional quadratic transform amounts to the projection onto
an ellipsoid and incurs matrix inverse operation. In contrast, the new quadratic
transform avoids matrix inverse by computing the projection onto a sphere.

where the equality holds if z = x. The above bound is called
nonhomogeneous due to the linear term 2ℜ{xH(L−K)z}.

Treating Di as L in (6), we let

K = λiI where λi ≥ λmax(Di), (7)

where λmax(Di) is the largest eigenvalue of Di, in order to
make L ⪯ K. One possible choice is λi = ∥Di∥F . Thus, by
virtue of Lemma 1, we can further recast fq(x,y) to

ft(x,y, z) =

n∑
i=1

[
2ℜ
{
ωix

H
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H
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]
. (8)

In particular, fq(x,y) = ft(x,y, z) if zi = xi for all i.
We now optimize x, y, and z iteratively in fq(x,y). When

y and x are both held fixed, the optimal update of z follows
by the equality condition in Lemma 1 as

z⋆
i = xi, for i = 1, 2, . . . , n. (9)

When z and x are both fixed, each yi is still optimally
determined as in (3). Next, when y and z are both held fixed,
the optimal xi in (8) is given by

x⋆
i = arg min

xi∈Xi

∥∥λixi − ωiA
H
i yi −

(
λiI −Di

)
zi
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2
. (10)

Most importantly, it no longer requires computing the inverse
of the potentially large matrix Di. Algorithm 2 summarizes
the above new iteration steps.

It is worth comparing (4) and (10) graphically. As shown in
Fig. 1, the update of xi in (4) by the conventional quadratic
transform can be interpreted as the projection onto an ellipsoid,
while the update of xi in (10) by the nonhomogeneous
quadratic transform can be interpreted as the projection onto
a sphere. The ellipsoid projection is in general much more
costly than the sphere projection in a high-dimensional space.

B. Accelerated Quadratic Transform

We now interpret the above proposed iterative optimization
as gradient projection. We use the superscript k = 1, 2, . . .
to index the iteration, and assume that the three variables
(x,y, z) are cyclically updated as

x0 → · · · → xk−1 → zk → yk → xk → zk+1 → · · · .



Algorithm 3 Extrapolated Quadratic Transform
1: initialize x to a feasible value
2: repeat
3: update each νi according to (12) and let xi = νi

4: update each zi according to (9)
5: update each yi according to (3)
6: update each xi according to (13)
7: until the value of fo(x) converges

We rewrite the optimal update of xi in (10) in a sphere-
projection form:

xk
i = PXi

(
zk
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(
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k
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))
. (11)

Recall that yk depends on xk−1 according to (3), while zk

depends on xk−1 according to (9). Expressing yk and zk in
terms of xk−1 rewrites the sphere projection of xk

i as

xk
i = PXi

(
xk−1
i +

1

λk
i

· ∂fo(x
k−1)

∂xi

)
,

which can be recognized as a gradient projection update.
The fact that the new quadratic transform method is a type

of gradient projection motivates us to use Nesterov’s extrapo-
lation scheme [2] to accelerate the convergence. Specifically,
following the heavy-ball intuition, we extrapolate each xi

along the direction of the difference between the preceding
two iterates before the gradient projection, i.e.,

νk−1
i = xk−1

i + ηk−1(x
k−1
i − xk−2

i ), (12)
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(
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i

)
, (13)

where the extrapolation step ηk is chosen as

ηk = max

{
k − 2

k + 1
, 0

}
, for k = 1, 2, . . . ,

and the starting point is x−1 = x0 as in [2]. The implementa-
tion details are summarized in Algorithm 3, referred to as the
extrapolated quadratic transform.

C. Convergence Analysis

In this subsection, we first show that the various quadratic
transform methods all guarantee convergence to a stationary
point of the FP problem in (2), and then analyze their rates
of convergence. All the proofs are omitted here and can be
found in the complete version [1] of this work.

The proof of the stationary-point convergence is based on
the MM theory [6], [7]. Write the optimal update of y in (3)
as a function of x:

Y(x) = y with each yi =

(
n∑

i=1

Bijxjx
H
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ij

)−1(
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)
.

By Algorithm 1, after yk is optimally updated for the previous
xk−1, the current new objective function fq(x,y) can be

rewritten as a function rq(x|xk−1) of x conditioned on xk−1:

rq(x|xk−1) = fq(x,Y(xk−1)), (14)

and accordingly the update of x in (4) can be rewritten as

xk = argmax
x∈X

rq(x|xk−1). (15)

Importantly, it always holds that

rq(x|xk−1) ≤ fo(x) and rq(x
k−1|xk−1) = fo(x

k−1),

so updating y for xk−1 is equivalent to constructing a sur-
rogate function rq(x|xk−1) for fo(x) at xk−1, namely the
minorization step. Moreover, (15) can be recognized as the
maximization step. As such, Algorithm 1 turns out to be
an MM method, and hence it guarantees convergence to a
stationary point of problem (2). By a similar argument, we
can also interpret Algorithm 2 as an MM method, with the
surrogate function

rt(x|xk−1) = ft(x,Y(xk−1),xk−1). (16)

Besides, the tradeoff between Algorithm 1 and Algorithm 2 via
timesharing constitutes an MM algorithm as well and hence
preserves the stationary-point convergence. Furthermore, re-
call that Algorithm 2 can also be interpreted as a gradient
projection method; since it has provable convergence to a
stationary point, so does its accelerated version Algorithm 3.
The following proposition summarizes the above results.

Proposition 1: Algorithms 1 and 2 are both the MM
methods. Algorithms 1, 2, and 3 all guarantee convergence
to some stationary point of the FP problem 2.

We now examine the rates of convergence for the various
quadratic transform methods. Due to the nonconvexity of the
FP problem, the global analysis (assuming that the starting
point is far from any stationary point) is intractable. We would
like to give a local analysis by restricting the constraint set to
a small neighborhood of a strict local optimum (so that the
starting point is not far away), i.e.,

X =
{
x : ∥x− x∗∥2 ≤ R

}
, (17)

where x∗ is a strict local optimum of (2) so that ∇2fo(x
∗) ⪯

−ξI ≺ 0 holds for some strictly positive constant ξ > 0, and
the radius R > 0 is sufficiently small so that fo(x) is concave
on X . Assume also that the Hessian of fo(x) is L-Lipschitz
continuous on X , i.e.,

∥∇2fo(x)−∇2fo(x
′)∥2 ≤ L∥x− x′∥2

for any x,x′ ∈ X . By Corollary 1.2.2 of [2], we have

∇2fo(x) ⪯ ∇2fo(x
∗) + L∥x− x∗∥2I,

so it suffices to let R ≤ ξ/L to render fo(x) concave on X .
Conditioned on x′ ∈ X , define the gaps between fo(x) and

the two surrogate functions to be two functions of x ∈ X as

δq(x|x′) = fo(x)− fq(x,Y(x′)),

δt(x|x′) = fo(x)− ft(x,Y(x′),x′).



Moreover, define the two quantities:

Λq = max
x∈X

λmax

(
∇2δq(x|x)

)
,

Λt = max
x∈X

λmax

(
∇2δt(x|x)

)
.

It can be shown that Λq ≤ Λt < ∞. We are now ready to show
the (local) convergence rates of Algorithm 1 and Algorithm 2.

Proposition 2 (Convergence Rates of Algorithm 1 and
Algorithm 2): For the FP problem (2), the local convergence
rate of Algorithm 1 or Algorithm 2 is

fo(x
∗)− fo(x

1) ≤ ΛR2

2
+

LR3

6
, (18)

fo(x
∗)− fo(x

k) ≤ 2ΛR2 + 2LR3/3

k + 3
, for k ≥ 2, (19)

where

Λ =

{
Λq for Algorithm 1;

Λt for Algorithm 2.
(20)

Because 0 ≤ Λq ≤ Λt, Algorithm 1 converges faster than
Algorithm 2 in iterations according to Proposition 2. Notice
that Λq and Λt characterize how well their corresponding
surrogate functions approximate the second-order profile of
fo(x). In the ideal case, the surrogate function and fo(x) have
exactly the same second-order profile so that Λ = 0, then the
objective-value error bound in Proposition 2 becomes

fo(x)− fo(x
k) ≤ L

6
∥x− xk−1∥32, (21)

which also holds for the cubically regularized Newton’s
method due to Nesterov as shown in [2]. Equipped with the
error bound (21), it immediately follows from Theorem 4.1.4
in [2] that

fo(x
∗)− fo(x

1) ≤ LR3

6
, (22)

fo(x
∗)− fo(x

k) ≤ LR3

2(1 + k/3)2
, for k ≥ 2. (23)

We now show that the extrapolated quadratic transform
method in Algorithm 3 can achieve fairly close to the ideal
case stated in (22) and (23). Since Algorithm 2 is a gra-
dient projection method and Algorithm 3 accelerates it by
Nesterov’s extrapolation, we immediately obtain the following
convergence rate from Proposition 6.2.1 of [14].

Proposition 3 (Convergence Rate of Algorithm 3): Suppose
that the gradient of fo(x) is C-Lipschitz continuous and let
λk
i = 1/(2C). Then Algorithm 3 yields

f(x∗)− f(x) ≤ 2C · [f(x∗)− f(x0)]

(k + 1)2
, for k ≥ 1. (24)

In summary, as compared to Algorithm 1 and Algorithm 2
that both yield an objective-value error bound of O(1/k),
Algorithm 3 yields a smaller error bound of O(1/k2).

IV. APPLICATION CASE: MASSIVE MIMO BEAMFORMING

Consider a downlink multi-cell network with L cells. In
each cell, one BS with M antennas sends independent mes-

sages towards Q downlink user terminals simultaneously by
spatial multiplexing; it shall be well understood that Q ≤ M .
Assume also that each user terminal has N receive antennas.
In particular, M ≫ N under the massive MIMO setting.

Moreover, we use ℓ or i = 1, . . . , L to index the cells and
the corresponding BSs and use q, j = 1, . . . , Q to index the
users in each cell. Denote by Hℓq,i ∈ CN×M the channel
from BS i to the qth user in cell ℓ, denote by vℓq ∈ CM

the transmit precoder of BS ℓ for its qth associated user, and
denote by σ2 the background noise power. The SINR of the
qth user in cell ℓ, denoted by SINRℓq , is computed as

SINRℓq =

vH
ℓqH

H
ℓq,ℓ

(
σ2I +

∑
(i,j)̸=(ℓ,q)

Hℓq,ivijv
H
ijH

H
ℓq,i

)−1

Hℓq,ℓvℓq.

Assigning a positive weight µℓq > 0 for each user q in cell
ℓ, we seek the optimal set of precoding vectors v = {vℓq} to
maximize the weighted sum-of-rates throughout the network:

maximize
v

L∑
ℓ=1

Q∑
q=1

µℓq log
(
1 + SINRℓq

)
(25a)

subject to
Q∑

q=1

∥vℓq∥22 ≤ P, ℓ = 1, . . . , L, (25b)

where the constraint (25b) states that the total transmit power
at each BS cannot exceed the power budget P .

At first glance, the FP methods do not apply to the above
problem because all the ratios (i.e., the SINRs) are now nested
in logarithms. Nevertheless, we can move the ratios to the
outside of logarithms by the Lagrangian dual transform [8],
so that problem (25) is converted to

maximize
v, γ

h(v, γ) (26a)

subject to
Q∑

q=1

∥vℓq∥22 ≤ P, ℓ = 1, . . . , L, (26b)

where γ = {γℓq} is a set of auxiliary variables and the new
objective function is given by

h(v, γ) =

n∑
i=1

µℓq

[
log(1 + γℓq)− γℓq + (1 + γℓq)Mℓq

]
with the shorthand

Mℓq = vH
ℓqH

H
ℓq,ℓ

(
σ2I +

∑
(i,j)

Hℓq,ivijv
H
ijH

H
ℓq,i

)−1

Hℓq,ℓvℓq.

Notice the distinction between SINRℓq and Mℓq .

We propose optimizing v and γ alternatingly in the new
problem (26). When v is fixed, the optimal γℓq equals SINRℓq

exactly. When γ is fixed, we only need to consider the first
term inside the square parentheses of h(v, γ); this subproblem
can be recognized as a weighted sum ratios problem, so all
the FP methods are applicable immediately.



We only show the use of Algorithm 2 in what follows;
Algorithm 3 can be used similarly. The nonhomogeneous
quadratic transform recasts h(v, γ) to

ft(v,y, z, γ) =

L∑
ℓ=1

Q∑
q=1

[
2ℜ
{
µℓq(1 + γℓq)v

H
ℓqH

H
ℓq,ℓyℓq

+ vH
ℓq(λℓI −Dℓ)zℓq

}
+ zH

ℓq(Dℓ − λℓI)zℓq − λℓv
H
ℓqvℓq

− µℓq(1 + γℓq)σ
2yH

ℓqyℓq + µℓq log(1 + γℓq)− µℓqγℓq

]
,

for which the iterative updates are carried out as

v0 → · · · → vk−1 → zk → yk → γk → vk → · · · .

Recall that the optimal update of γ is to let each γ⋆
ℓq =

SINRℓq . The optimal update of y is

y⋆
ℓq =

(
σ2I +

∑
(i,j)

Hℓq,ivijv
H
ijH

H
ℓq,i

)−1

Hℓq,ℓvℓq

and the optimal update of z is to let z⋆ = x. To update v,
we first compute

vℓq = zℓq +
1

λℓ

(
µℓq(1 + λℓq)H

H
ℓq,ℓyℓq −Dℓzℓq

)
, (27)

where

Dℓ =

L∑
i=1

Q∑
j=1

µij(1 + γij)H
H
ij,ℓyijy

H
ijHij,ℓ, (28)

and then optimally enforce the power constraint as

v⋆
ℓq =

 v̂ℓq if
∑Q

j=1 ∥v̂ℓj∥22 ≤ P√
P
/∑Q

j=1 ∥v̂ℓj∥22 · v̂ℓq otherwise.

Interestingly, if we instead use the conventional quadratic
transform of Algorithm 1 to optimize v in h(v, γ), then the
iterative optimization boils down to the WMMSE algorithm
[9], [10]. However, WMMSE requires computing the inverse
of an M ×M matrix many times, so its complexity is high in
the massive MIMO scenario in which M is a large number.

We now test the various quadratic transform methods for
massive MIMO in a simulated 7-hexagonal-cell wrapped-
around network as considered in [4]. Within each cell, the
BS is located at the center and the 6 downlink users are
randomly placed. Each BS has 128 antennas and each user
has 4 antennas. The BS-to-BS distance is set to be 0.8 km.
The maximum transmit power level at the BS side is set to be
20 dBm, and the AWGN power level is set to be −90 dBm.
The downlink distance-dependent path-loss is simulated by
128.1+37.6 log10(d)+ τ (in dB), where d represents the BS-
to-user distance in km, and τ is a zero-mean Gaussian random
variable with 8 dB standard deviation for the shadowing effect.
We consider sum rate maximization by setting all the weights
to 1. Again, Algorithm 1, Algorithm 2, and Algorithm 3 are
the competitors. As shown in Fig. 2(a), Algorithm 1 converges
faster than the other two methods in terms of iterations; this
result agrees with the former discussion below Proposition 2.
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Fig. 2. Maximizing sum rates in massive MIMO network. Panel (a) shows
the convergence in iterations, while panel (b) shows the convergence in time.

When it comes to the convergence evaluated by time, as shown
in Fig. 2(b), the two accelerated quadratic transform methods
are much more efficient than Algorithm 1.

V. CONCLUSION

This work develops the existing theory and algorithm of
FP, focusing on their applications in wireless networks. The
quadratic transform is a state-of-the-art tool in the FP area.
As a starting point, we establish a connection between the
quadratic transform and the gradient projection; this connec-
tion turns out to be fairly useful in that it enables the iterative
optimization to get rid of matrix inverses. We then propose
further accelerating the quadratic transform via extrapolation.
Of fundamental importance is the convergence rate analysis
that follows. To the best of our knowledge, this is the very
first work that examines how fast the quadratic transform (in-
cluding its special case the WMMSE algorithm) converges and
also how to render it even faster. Moreover, we demonstrate
the practical usefulness of the accelerated quadratic transform
through the application case of massive MIMO beamforming.
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