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ABSTRACT
Pilot contamination is a main limiting factor in multi-cell
massive multiple-input multiple-output (MIMO) systems due
to the non-orthogonality of pilot sequences which can se-
riously impair the channel measurement. Recent work has
suggested coordinating pilot sequence design across multiple
cells by choosing the sequences to minimize the channel es-
timation error. This paper further investigates this approach
using a new optimization framework. Specifically, we refor-
mulate the weighted minimum mean-squared error (MMSE)
measure as a sum-of-functions-of-matrix-ratio program that
can be efficiently solved via a matrix fractional programming
approach. The proposed algorithm provides fast convergence
to a stationary-point solution of the MMSE problem. Sim-
ulations demonstrate the advantage of the proposed method
over alternative approaches in enhancing channel estimation
accuracy.

1. INTRODUCTION

The acquisition of channel state information is crucial in
massive multiple-input multiple-output (MIMO) wireless
networks. A main challenge in channel estimation is that due
to the limited coherence time, pilot sequences assigned to
multiple users across multiple cells cannot all be orthogonal.
The non-orthogonality of the pilots (e.g., due to the reuse of
pilots across cells) causes the channel estimate of a particular
user terminal to be affected by the pilots of other users—a
phenomenon known aspilot contamination [?,?].

This paper pursues a strategy of designing the pilot se-
quences of the users across the cells as function of their large-
scale fading (assuming that they are relatively stationary) in
order to minimize pilot contamination. Following the recent
works of [?, ?], the idea is that the effect of pilot contami-
nation depends on the large-scale fading between the users
and the base stations (BSs). For example, if an interfering
pilot signal is weak, then it can afford to have higher correla-
tion with the pilots of the desired users. Thus, judicious pilot
design for the different users across multiple cells can help
control pilot contamination.

The works in [?,?] suggested mitigating pilot contamina-
tion by designing the sequences to optimize a suitable system

metric. In particular, the authors considered minimizing the
sum mean-squared error (MSE) that can be obtained when
estimating the channels from the system output. Here we fur-
ther consider minimizing the weighted sum MSE in channel
estimation across a multi-cell massive MIMO network. The
main novelty of this paper is in pointing out that this problem
is a sum-of-functions-of-matrix-ratioproblem that can beeffi-
ciently solved by using a recently developed matrix fractional
programming (FP) technique [?]. In contrast to [?] that de-
signs the pilots of all users in a greedy symbols-by-symbols
fashion, this work seeks a joint optimization of all pilot sym-
bols based on a matrix FP formulation. Further, we discuss a
discrete symbol case in which the pilot symbols are restrict-
ed to a fixed constellation. Numerical results show that our
coordinated pilot sequence design strategy significantly out-
performs both the conventional pilot-reuse strategy and the
greedy pilot design technique of [?].

The pilot contamination problem has been studied exten-
sively in the literature over the past decade. To quantify the
performance, many works [?,?,?,?,?,?,?] consider the max-
imization of the throughput, while many others consider the
minimization of the MSE in channel estimation [?,?,?,?,?,?].
The blind or semi-blind pilot methods in [?,?,?] aim to bypass
the pilot contamination problem by estimating the channels
directly without the pilots. The primary idea of [?] is to opti-
mize the set of downlink pilots by using a precoding matrix,
while other works, e.g., [?,?,?,?,?,?], seek a contamination-
aware allocation of a given set of orthogonal pilots. Further-
more, [?,?,?] consider the optimal pilot design for each cell
sequentially.

Notation: We use bold lower-case (or upper-case) letters
to denote vectors (or matrices),‖ · ‖ as the Euclidean norm,
(·)⊤ as the transpose,(·)∗ as the conjugate transpose,tr(·) as
the trace, and(·)
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2 as the square root of a matrix. LetE be the
expectation,Cm×n the set ofm×n complex matrices,Hn×n

the set ofn×n positive-definite Hermitian matrices,diag the
diagonal matrix,j the imaginary unit,ℜ (or ℑ) the real (or
imaginary) part of a complex number,In then × n identity
matrix, andN (or CN ) a (complex) Gaussian distribution.
Finally, we use underline to denote a collection of variables,
e.g.,X = {X1,X2, . . . ,Xn}.



2. PROBLEM FORMULATION

Consider a total ofL cells with one BS andK user terminals
per cell. The full spectrum band is reused in every cell. We
usei or j to denote the index of each cell and its BS, and(i, k)
the index of thekth user in celli. Assume that every BS has
N antennas and every user terminal has a single antenna. Let
hijk ∈ CN be the channel from user(j, k) to BS i, and let
Hij = [hij1,hij2, . . . ,hijK ]; eachhijk is modeled as

hijk = gijk

√
βijk (1)

wheregijk ∈ CN is small-scale fading with i.i.d. entries
distributed asCN (0, 1), andβijk ≥ 0 is large-scale fading.

Each BSi estimates itsHii based on theuplink pilot
signals from the users in the cell. Letsik ∈ Cτ be a se-
quence of pilot symbols transmitted from user(i, k), and let
Si = [si1, si2, . . . , siK ]. The pilot signal received at BSi is

Vi = HiiS
⊤
i +

∑
j 6=i

HijS
⊤
j + Zi (2)

whereZi ∈ CN×τ is additive noise with i.i.d. entries dis-
tributed asCN (0, σ2).

Pilot contamination arises if pilot sequences within and
acrossSi andSj are non-orthogonal. Let̂Hii be theminimum
mean square error (MMSE) estimate ofHii at BSi, and let
MSEik = E

[
‖ĥiik − hiik‖2

]
be the corresponding MSE for

user(i, k), whereĥiik is thekth column ofĤii. We aim to
minimize a weighted sum MSE:

minimize
L∑

i=1

K∑

k=1

wikMSEik (3)

given a set of nonnegative weightswik ≥ 0. For instance, we
may setwik = 1 to minimize the sum MSE as in [?], or set
wik = 1/βiik to minimize the normalized sum MSE as in [?].
Following the steps in [?], we can formalize (3) as

maximize
S

L∑

i=1

tr
(
WiPiiS

∗
iD

−1
i SiPii

)
(4a)

subject to ‖sik‖
2 ≤ ρ, ∀(i, k) (4b)

whereWi = diag[wi1, wi2, . . . , wiK ], ρ is the power con-
straint,Pij = diag[βij1, βij2, . . . , βijK ], andDi = σ2

Iτ +∑L

j=1 SjPijS
∗
j .

Problem (4) is a difficult optimization problem, because
the choice of pilot sequencesSi appears in both the numera-
tor and the denominator of a matrix fraction in (4a). While the
earlier work [?] proposes a greedy sum of ratio traces maxi-
mization (GSRTM) algorithm to optimize each row ofSi se-
quentially, we devise a matrix-FP approach to optimize the
entire matrixSi jointly. As a result, our approach has a lower
computational complexity, and achieves much higher channel
estimation accuracy according to the numerical results.

3. COORDINATED PILOT DESIGN

3.1. Matrix FP

This section reviews the matrix FP technique in [?] briefly.
We start with the definition ofmatrix ratio. For a pair of ma-
tricesA ∈ Cm×n andB ∈ Cm×m, A∗B−1A is said to be
the ratio between the numerator matrixAA∗ and the denom-
inator matrixB. The following theorem from [?] is able to
decouple the numerator and denominator of the matrix ratio.

Theorem 1 (Matrix Quadratic Transform [?]). Given a
nonempty constraint set X as well as a sequence of functions
Ai(x) ∈ Cm×n, functions Bi(x) ∈ Hm×m, and nonde-
creasing functions fi(M) in the sense that fi(M′) ≥ fi(M)
if M′ � M, for i = 1, 2, . . . , L, the sum-of-functions-of-
matrix-ratio problem

maximize
x∈X

L∑

i=1

fi

(
A∗

i (x)B
−1
i (x)Ai(x)

)
(5)

is equivalent to

maximize
x∈X , Y

L∑

i=1

fi

(
2ℜ{A∗

i (x)Yi} −Y∗
iBi(x)Yi

)
(6)

where Yi ∈ Cm×n is an auxiliary variable introduced for
each matrix ratio term.

Proof. By completing the square, eachYi can be optimally
computed asYi = B−1

i (x)Ai(x). Plugging this optimalYi

in (6) recovers (5) and thus establishes the equivalence.

3.2. Iterative Optimization via Matrix FP Approach

In light of Theorem 1, we can reformulate (4) as follows.

Proposition 1. Problem (4) is equivalent to

maximize
S,Y

L∑

i=1

tr
(
Wi

(
2ℜ
{
PiiS

∗
iYi

}
−Y∗

iDiYi

))
(7a)

subject to ‖sik‖
2 ≤ ρ, (7b)

Yi ∈ C
τ×K . (7c)

Proof. Note thatPii = P∗
ii. The new objective function is

derived by treatingSiP
∗
ii asAi, Di asBi in Theorem 1.

To solve the problem in Proposition 1, we propose to op-
timizeS andY alternatively. WhenS is held fixed, eachYi

can be optimally determined by completing the square forYi

in (7a), i.e.,
Yi = D−1

i SiPii. (8)

Next, we optimizeS for fixedY. The key step is to rewrite
the objective function in (7a) as

∑
(i,k) ξik + c(Y) after some



Algorithm 1: Coordinated Pilot Design

1 Initialize all the variables to feasible values;
2 repeat
3 Update the auxiliary variableY by (8);
4 Update the pilot variableS by (11);
5 until the variables (S,Y) converge;

matrix algebra, whereyik refers to thekth column ofYi,

ξik = 2ℜ{wikβiiks
∗
ikyik} − s∗ik

(
L∑

j=1

βjikYjWjY
∗
j

)
sik,

(9)
andc(Y) refers to the term that is independent ofS. Further,
with the power constraint (7b) integrated in, we arrive at the
following new objective function for problem (7):

f(S,Y) =
∑

(i,k)

(
ξik − λik

(
‖sik‖

2 − ρ
))

+ c(Y) (10)

where eachλik is a Lagrangian multiplier for constraint (7b).
By completing the square in (10), we find the optimalsik as

sik =

(
L∑

j=1

βjikYjWjY
∗
j + λikIτ

)−1

wikβiikyik (11)

whereλik can be computed by a bisection search to meet con-
straint (7b). Algorithm 1 summarizes the overall approach.

In the particular case whereZi is negligible (i.e.,σ2 = 0),
as pointed out in [?], the weighted sum MSE remains the same
if each pilotsik is multiplied by the same nonzero factorα.
In this case, we can enforce the power constraint by scaling
all thesik ’s (for λik = 0) simultaneously with a sufficiently
smallα > 0, instead of going through the computation ofλik.

Proposition 2. The weighted sum MSE is monotonically non-
increasing after each iterate of Algorithm 1. Further, the pilot
variable S converges to a stationary point of problem (4).

Proof. It can be shown that the iterative update by Algo-
rithm 1 can be interpreted as a sequence of minorization-
maximization [?,?]; the technical details follow [?].

We next compare Algorithm 1 with the GSRTM algorithm
proposed in [?]. The main idea behind GSRTM is to optimize
one row of the matrixSi at a time while fixing all other rows.
Because the rows ofSi are not optimized jointly in GSRTM,
this greedy method is prone to being trapped in a local op-
timum. Furthermore, it can be shown that Algorithm 1 has
a computational complexity scaling ofO(τ3LKU) whereU
is the number of iterations, while GSRTM has computational
complexity scaling ofO(τ3L2K + τ4L), so that GSRTM is
more sensitive1 to τ andL. Moreover, the convergence prop-
erty of GSRTM is difficult to analyze, whereas Algorithm 1

1AlthoughU may increase withτ andL, we can stop Algorithm 1 early
because of its monotonic improvement as stated in Proposition 2.

0 10 20 30 40 50 60 70 80 90 100

Number of Iterations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
um

 M
S

E

10-4 Orthogonal
Random
GSRTM [4]
Coordinated
One-Bit

Fig. 1. Sum MSE after each iteration.

is guaranteed to converge to a stationary-point solution. In
Section 4 we present numerical results that demonstrate the
performance advantage of Algorithm 1 over GSRTM.

3.3. One-Bit Pilot Sequence Design

Arbitrary complex-valued pilot sequences may be difficult to
implement in practice. In this section, we restrict the choice
of each pilot symbolsik[t] to a 4-QAM constellationQ =
{ε(1+ j), ε(1− j), ε(−1+ j), ε(−1− j)} whereε =

√
ρ/2τ .

Such sequences are referred to as one-bit pilot sequences, be-
cause their in-phase and quadrature components are±1.

To design optimal one-bit pilot sequences, we maximize
the objective functionf(S,Y) in (10) for fixedY over the
QAM-constellation as follows:

sik = arg min
q∈Qτ

∥∥∥∥∥

(
L∑

j=1

βjikYjWjY
∗
j

) 1

2 (
q− s̃ik

)
∥∥∥∥∥ (12)

wheres̃ik has the same form as (11) but withλik = 0. How-
ever, the above projection ofs̃ik toQτ may be computational-
ly complex in practice as the size ofQτ grows exponentially
with the pilot lengthτ . Thus, we propose a suboptimal solu-
tion of simply rounding each̃sik[t] toQ, i.e.,

sik[t] = ε · sgn(ℜ{s̃ik[t]}) + j ε · sgn(ℑ{s̃ik[t]}) (13)

wheresgn(·) is the sign function. Observe that the heuris-
tic in (13) is equivalent tosik = argminq∈Qτ ‖q − s̃ik‖.
As compared to (12), this heuristic in essence approximates(∑L

j=1 βjikYjWjY
∗
j

) 1

2 asδIτ for someδ.

4. NUMERICAL RESULTS

We validate the performance of the proposed method in a
7-cell wrapped-around network. Each cell consists of a 16-
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Fig. 2. Cumulative distribution of MSEs.

antenna BS located at the center and 9 single-antenna user
terminals uniformly distributed. The BS-to-BS distance is
1000 meters. Letτ = 10 and letρ = 1. Following [?],
we assume that the background noise is negligible and that
βijk = ϕijk/d

3
ijk whereϕijk is an i.i.d. log-normal random

variable according toN (0, 82) anddijk is the distance be-
tween user(j, k) and BSi. In addition to the GSRTM algo-
rithm with a random dictionary (see [?]), we further introduce
two baseline methods as follows:

• Orthogonal Method: Fix a set of 10 orthogonal pilots;
allocate a random subset of 9 pilots to users in each cell.

• Random Method: Generate the pilots randomly and in-
dependently according to the Gaussian distribution.

The orthogonal method is used to initialize Algorithm 1.
Fig. 1 compares the sum MSE for the various method-

s. According to the figure, the coordinated approach in Al-
gorithm 1 reduces the sum MSE sharply as compared to the
conventional orthogonal method. Further, around 75% of the
sum-MSE reduction is obtained after just 10 iterations. It can
also be seen that the one-bit strategy already improves upon
the baseline methods and GSRTM, albeit not by as much as
the infinite precision coordinated approach. Fig. 2 takes a
closer look at the cumulative distribution of the MSE. Ob-
serve that the coordinated approach is far superior to all the
other techniques in that it yields the smallest MSE in all the
percentiles.

We now consider minimizing the weighted sum MSE
throughout the network. Because the absolute value of MSE
is proportional to the channel magnitude, weighting MSEs
equally would give preference to the users with strong chan-
nels. To provide some measure of fairness, a possible heuris-
tic [?] is to weight the MSEs bywik = 1/βiik.

Fig. 3 shows a scatter plot of MSE vs. channel strength
for this weighted coordinated approach as compared to
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the sum-MSE version of Algorithm 1 and the orthogonal
method. Although the sum-MSE coordinated approach has
considerable advantage over the orthogonal method in min-
imizing the overall MSEs as shown in the previous result-
s, its performance in the weak-channel region (e.g., when
βiik < −70dB) is close to or even slightly worse than that
of the orthogonal method as shown in Fig. 3. The reason is
that using the sum MSE as the objective does not take into
account the difference in channel strengths among the users,
while the weighted coordinated approach is able to improve
the MSE for the cell-edge users (which are more vulnerable
to pilot contamination) at slight cost to the cell-center users.
Indeed, the weighted coordinated approach is inferior to the
orthogonal method when the channel strength is very strong
(βiik > −55dB), but only a very small portion of users have
such strong channels. Thus, there is overall benefit for the
weighted coordinated approach.

5. CONCLUSION

This paper advocates a matrix-FP approach for coordinating
the uplink pilots across multiple cells in order to mitigatepi-
lot contamination in a massive MIMO system. The proposed
algorithm optimizes the pilots iteratively in closed form,guar-
anteeing a monotonic reduction of the weighted sum MSE of
the channel estimation throughout the network. Numerical re-
sults show that the proposed algorithm outperforms the con-
ventional orthogonal pilot reuse method significantly particu-
larly for the cell-edge users and also improves upon a recently
proposed greedy method.

6. ACKNOWLEDGEMENT

The authors would like to thank Shahar Stein Ioushua and Dr.
Foad Sohrabi for their help in the simulation part of this work.



7. REFERENCES

[1] E. G. Larsson, O. Edors, F. Tufvesson, and T. L.
Marzetta, “Massive MIMO for next generation wire-
less systems,”IEEE Commun. Mag., vol. 52, no. 2, pp.
186–195, Feb. 2014.

[2] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and
R. Zhang, “An overview of massive MIMO: Benefits
and challenges,”IEEE J. Sel. Topics Signal Process.,
vol. 8, no. 5, pp. 742–758, Oct. 2014.

[3] S. S. Ioushua and Y. C. Eldar, “Pilot contamination miti-
gation with reduced RF chains,” inIEEE Workshop Sig-
nal Process. Advances Wireless Commun. (SPAWC), Ju-
ly 2017.

[4] S. S. Ioushua and Y. C. Eldar, “Pilot contamination mit-
igation with reduced RF chains,” [Online]. Available:
https://arxiv.org/abs/1801.05483, 2018.

[5] K. Shen, W. Yu, L. Zhao, and D. P. Palomar, “Co-
ordinated scheduling and spectrum sharing via matrix
fractional programming,” [Online]. Available: http-
s://arxiv.org/abs/1808.05678, 2018.

[6] R. R. Müller, L. Cottatellucci, and M. Vehkaperä,
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