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ABSTRACT metric. In particular, the authors considered minimizihg t
Pilot contamination is a main limiting factor in multi-cell sum mean-squared error (MSE) that can be obtained when
massive multiple-input multiple-output (MIMO) systemsaedu estimating the channels from the system output. Here we fur-
to the non-orthogonality of pilot sequences which can sether consider minimizing the weighted sum MSE in channel
riously impair the channel measurement. Recent work hasstimation across a multi-cell massive MIMO network. The
suggested coordinating pilot sequence design acrosspheulti main novelty of this paper is in pointing out that this prable
cells by choosing the sequences to minimize the channel es a sum-of-functions-of-matrix-ratio problem that carefffe
timation error. This paper further investigates this applo ciently solved by using a recently developed matrix frawio
using a new optimization framework. Specifically, we refor-programming (FP) techniqué@][ In contrast to P] that de-
mulate the weighted minimum mean-squared error (MMSE3¥igns the pilots of all users in a greedy symbols-by-symbols
measure as a sum-of-functions-of-matrix-ratio prograat th fashion, this work seeks a joint optimization of all pilohsy
can be efficiently solved via a matrix fractional programgiin bols based on a matrix FP formulation. Further, we discuss a
approach. The proposed algorithm provides fast conveggendliscrete symbol case in which the pilot symbols are restrict
to a stationary-point solution of the MMSE problem. Sim-ed to a fixed constellation. Numerical results show that our
ulations demonstrate the advantage of the proposed methodordinated pilot sequence design strategy significantty o
over alternative approaches in enhancing channel estimati performs both the conventional pilot-reuse strategy amed th
accuracy. greedy pilot design technique df][

The pilot contamination problem has been studied exten-
1. INTRODUCTION sively in the literature over the past decade. To quantiéy th
—_ . . .. performance, many work®][?,?,?,?,?,?] consider the max-
The acquisition of channel state information is crucial INimization of the throughput, while many others consider the
massive multiple-input multiple-output (MIMO) wireless minimization of the MSE in c’:hannel estimation?,?,?,?,7].
networks. A main challenge in channel estimation is that dug, . 1ind or semi-blind pilot methods if[?,7] aim to b,y;,)ass

to the limited coherence t_|me, pilot sequences assigned e pilot contamination problem by estimating the channels
multiple users across multiple cells cannot all be orth@don directly without the pilots. The primary idea d7[[is to opti-

T_he non-orthogonality of the pilots (e.g., d_ue to the redge mize the set of downlink pilots by using a precoding matrix,
pilots across cells) causes the channel estimate of aplartic |, .« ther works. e 9.7.2,.2,2,2.7], seek a contamination-
user terminal to be affected by the pilots of other USES—Aware allocation of a given set of orthogonal pilots. Furthe

phenqmenon known aslot contamination [9 ?]'. . more, [?,?, ?] consider the optimal pilot design for each cell
This paper pursues a strategy of designing the pilot se-

guences of the users across the cells as function of thga-ar sequentially.
scale fading (assuming that they are relatively stationiary Notation: We use bold lower-case (or upper-case) letters
order to minimize pilot contamination. Following the reten to denote vectors (or matrices); || as the Euclidean norm,
works of [?, 7], the idea is that the effect of pilot contami- ()T as the transposé,)* as the conjugate transpose(,-) as
nation depends on the large-scale fading between the usete trace, and-)% as the square root of a matrix. Liete the
and the base stations (BSs). For example, if an interferingxpectationC™*" the set ofn x n complex matricesH™*"
pilot signal is weak, then it can afford to have higher carel the set ofz x n positive-definite Hermitian matricediag the
tion with the pilots of the desired users. Thus, judicioustpi diagonal matrix,j the imaginary unitR (or <) the real (or
design for the different users across multiple cells cap helimaginary) part of a complex numbek, then x n identity
control pilot contamination. matrix, andN (or CA) a (complex) Gaussian distribution.
The works in P, ?] suggested mitigating pilot contamina- Finally, we use underline to denote a collection of variaple
tion by designing the sequences to optimize a suitablemsystee.g., X = {X;,Xo, ..., X, }.



2. PROBLEM FORMULATION 3. COORDINATED PILOT DESIGN

Consider a total of. cells with one BS and{ user terminals 3.1. Matrix FP

per cell. The full spectrum band is reused in every cell. We_ . . . . .

usei or j to denote the index of each cell and its BS, g&hdt) | 1IS Section reviews the matrix FP technique  briefly.

the index of thekth user in celli. Assume that every BS has We start with the definition afmatrix ratio. Ijor a pair of ma-

1 mXn mXm * — 1 H

N antennas and every user terminal has a single antenna. LtEPESA €C andB € C A ,B A is said to be

h,;x € CN be the channel from uséy, k) to BS4, and let the ratio between the numerator mat®A * and the denom-
1R Y ’

inator matrixB. The following theorem from] is able to

Hij = [hijlv hijg, Ceey hin]; eachhijk is modeled as . X .
decouple the numerator and denominator of the matrix ratio.
biji = 8ij v/ Biji @ Theorem 1 (Matrix Quadratic Transform 7). Given a

whereg;;, € CV is small-scale fading with i.i.d. entries NONeMPty constraint set A" as well as a sequence of functions

distributed agA’(0, 1), andB,;, > 0 is large-scale fading. ~ Ai(x) € C™*", functions B;(x) € H™™, and nonde-
Each BSi estimates itsH,; based on thesplink pilot ~ creasing functions f;(M) in the sense that f;(M') > f;(M)

signals from the users in the cell. Let, € C” be a se- M’ = M, fori = 1,2,..., L, the sum-of-functions-of-

quence of pilot symbols transmitted from ugérk), and let ~ Matrix-ratio problem

S; = [si1, 82, - - -, Sikc]. The pilot signal received at BSs

L

maximize (A¥(x)BH(x)A; 5

VoS T (2) wimiz ;f( (0BT AX)  (5)
JF =

whereZ; € CN*7 is additive noise with i.i.d. entries dis- iSequivalentto
tributed a<C V' (0, 02). .

Pilot contamination arises if pilot sequences within and o X "
acrossS; andS; are non-orthogonal. L& ; be theminimum mayye ; fi (2§R{Ai (Y} - Y, Bi(X)Yi) ©6)
mean square error (MMSE) estimate of;; at BS4, and let o
MSE;, = E[||hsix — hyi||?] be the corresponding MSE for where Y; € C™*" is an auxiliary variable introduced for
user(i, k), whereﬂiik is thekth column ofﬁii. We aim to  each matrix ratio term.

minimize a weighted sum MSE: ) )
Proof. By completing the square, eadh; can be optimally

L K computed a¥; = B; (x)A;(x). Plugging this optimal’;
minimize Z Z wikMSE (3) in (6) recovers (5) and thus establishes the equivalencil
i=1 k=1

given a set of nonnegative weights;, > 0. For instance, we 3.2. Iterative Optimization via Matrix FP Approach
may setw;; = 1 to minimize the sum MSE as ir?], or set

. In light of Th 1 f | 4 foll .
wir = 1/ B to minimize the normalized sum MSE as . nlighto eorem 1, we can reformulate (4) as follows

Following the steps in7], we can formalize (3) as Proposition 1. Problem (4) is equivalent to
L L
H *y—1
maximize Ztr(WiPiiSi D;'S,Pi;) (4a) maximize Ztr(wi(zﬁ{PiiS;*Yi} —Y;*DiYi)) (7a)
= i=1 S, Y P
subject to HSM,”Q < p, V(i, ]C) (4b) subject to ||Sik||2 < p, (7b)
whereW,; = diag[w;, wio, ..., wik], p is the power con- Y, € CT*K. (7c)
Straint,Pij = diag[ﬁijl,ﬁiﬂ, - ,ﬁij[(], andDi = 0'2_[.,— + ) . ) .
L g p g Proof. Note thatP;; = Pj;. The new objective function is
23—1 JE g g

Problem (4) is a difficult optimization problem, becausedeved by treating; Pj; asA;, D; asB; in Theorem 1.

the choice of pilot sequenc&s appears in both the numera- To solve the problem in Proposition 1, we propose to op-

tor and the denominator of a matrix fraction in (4a). While th' timize S andY’ alternatively. Whers is held fixed, eachy;

earlier work [?] proposes a greedy sum of ratio traces maxi- - ; ;
o . - can be optimally determined by completing the squaré&fpr
mization (GSRTM) algorithm to optimize each row 9f se- P y y P g g P

. g . T in (7a), i.e.,
quentially, we devise a matrix-FP approach to optimize the

entire matrixS; jointly. As a result, our approach has a lower
computational complexity, and achieves much higher channé&lext, we optimizeS for fixed Y. The key step is to rewrite
estimation accuracy according to the numerical results. the objective function in (7a) ag(iﬁk) &k + ¢(Y) after some

Y. =D; 'S;P;. (8)



Algorithm 1: Coordinated Pilot Design L 10 —+—Orthogonal | _
T - - ’ ‘ —&— Random
1 Initialize all the variables to feasible values; e GsrTM [
A4r di d|
2 repeat - - 1.4 —*—gﬂiéirt\ate
3 Update the auxiliary variab® by (8); 15® ®
4 Update the pilot variabl8 by (11); ¢ + + ¢
5 until thevariables (S,Y) converge; 1
ngJ =) =) 1]
g 0.8
matrix algebra, wherg;; refers to thekth column ofY;, ? 06 I
L i
* * * 0.4
Eir = 2R{wir BiikSipYik } — Six <Z ﬁijjoYj> Siks . .
j=1 0.2
(9) L L L L L L L L L
andc(Y) refers to the term that is independen®ofFurther, 0 10 20 30 40 0 s 70 8 9 100
with the power constraint (7b) integrated in, we arrive &t tt Number of lterations

following new objective function for problem (7):

F8.Y) =3 (& = Aulllsal* = p) +e(¥) (10)

where each\;; is a Lagrangian multiplier for constraint (7b).
By completing the square in (10), we find the optimalas

Fig. 1. Sum MSE after each iteration.

is guaranteed to converge to a stationary-point solution. |
Section 4 we present numerical results that demonstrate the
performance advantage of Algorithm 1 over GSRTM.

L —1
Sik = <Z BiikY; W, Y] + AikL) wikBukyik (11)  3.3. One-Bit Pilot Sequence Design
= Arbitrary complex-valued pilot sequences may be difficalt t

where);;, can be computed by a bisection search to meet conmplement in practice. In this section, we restrict the ckoi
straint (7b). Algorithm 1 summarizes the overall approach. of each pilot symbok;,[t] to a 4-QAM constellationr® =

In the particular case whe® is negligible (i.e.0” = 0),  {=(1+j),2(1 —j),e(=1+]),e(—1—])} wheres = \/p/27.
as pointed out in7], the weighted sum MSE remains the sameSuch sequences are referred to as one-bit pilot sequermses, b
if each pilots;;, is multiplied by the same nonzero facter  cause their in-phase and quadrature components hre
In this case, we can enforce the power constraint by scaling To design optimal one-bit pilot sequences, we maximize
all thes;’s (for A;x = 0) simultaneously with a sufficiently the objective functiory(S,Y) in (10) for fixed Y over the
smalla > 0, instead of going through the computation\gf. QAM-constellation as follows:

Proposition 2. Theweighted sumMSE ismonotonically non-
increasing after each iterate of Algorithm 1. Further, the pilot Six = arg min
variable S convergesto a stationary point of problem (4). qeQ”

2

L
<Z ﬁjik:YjoY;> (a—si)
=1

Proof. It can be shown that the iterative update by Algo-\heres;, has the same form as (11) but with, = 0. How-
rithm 1 can be interpreted as a sequence of minorizationeyer, the above projection &f;, to Q™ may be computational-
maximization [?, 7]; the technical details follow). 0 ly complex in practice as the size & grows exponentially
with the pilot lengthr. Thus, we propose a suboptimal solu-
tion of simply rounding each;;[t] to Q, i.e.,

‘ (12)

We next compare Algorithm 1 with the GSRTM algorithm
proposed in?P]. The main idea behind GSRTM is to optimize
one row of the matriXs; at a time vyhi_le fix_in_g all pther rows. siult] = € - sgn(R{Gi[t]}) +je - sgn(S{5:x[t]})  (A3)
Because the rows &; are not optimized jointly in GSRTM,
this greedy method is prone to being trapped in a local opwherESgn(-) is the Sign function. Observe that the heuris-
timum. Furthermore, it can be shown that Algorithm 1 hagfic in (13) is equivalent tas;; = argmingeo- [[q — Sikl|.

a computational complexity scaling 6f(73 LK U) wheret/ ~ As compared to (12), tlhis heuristic in essence approximates
is the number of iterations, while GSRTM has computational Ele BikY;W;Y75)? asol, for somed.

complexity scaling ofD(72L?K + 7%L), so that GSRTM is

more sensitivétq T gngL. Moreover, the convergence prop- 4. NUMERICAL RESULTS

erty of GSRTM is difficult to analyze, whereas Algorithm 1

1Although U may increase with and L, we can stop Algorithm 1 early Ve Validate the performance of the proposed methOd ina
because of its monotonic improvement as stated in Proposti 7-cell wrapped-around network. Each cell consists of a 16-
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Fig. 2. Cumulative distribution of MSEs. Fig. 3. MSE vs. Large-scale channel strength..

antenna BS located at the center and 9 single-antenna ugbe sum-MSE version of Algorithm 1 and the orthogonal
terminals uniformly distributed. The BS-to-BS distance ismethod. Although the sum-MSE coordinated approach has
1000 meters. Let = 10 and letp = 1. Following [?], = considerable advantage over the orthogonal method in min-
we assume that the background noise is negligible and thénizing the overall MSEs as shown in the previous result-
Bijk = @ijk,/d%k whereyp; ;. is an i.i.d. log-normal random s, its performance in the weak-channel region (e.g., when
variable according toV'(0,8%) andd,;;, is the distance be- i < —70dB) is close to or even slightly worse than that
tween usefj, k) and BSi. In addition to the GSRTM algo- ©f the orthogonal method as shown in Fig. 3. The reason is
rithm with a random dictionary (se€]), we furtherintroduce  that using the sum MSE as the objective does not take into
two baseline methods as follows: account the difference in channel strengths among the,users
o . while the weighted coordinated approach is able to improve
* Orthogonal Method: Fix a set Of. 10 orthogon_al pilots; he MSE for the cell-edge users (which are more vulnerable
allocate a random subset of 9 pilots to users in each ceq0 pilot contamination) at slight cost to the cell-centeenss
* Random Method: Generate the pilots randomly and in- |ndeed, the weighted coordinated approach is inferior ¢o th
dependently according to the Gaussian distribution.  orthogonal method when the channel strength is very strong
The orthogonal method is used to initialize Algorithm 1. (Biix > —55dB), but only a very small portion of users have
Fig. 1 compares the sum MSE for the various method—s”(_:h strong che_annels. Thus, there is overall benefit for the
s. According to the figure, the coordinated approach in AlWeighted coordinated approach.
gorithm 1 reduces the sum MSE sharply as compared to the
conventional orthogonal method. Further, around 75% of the 5. CONCLUSION
sum-MSE reduction is obtained after just 10 iterationsatft ¢
also be seen that the one-bit strategy already improves updiis paper advocates a matrix-FP approach for coordinating
the baseline methods and GSRTM, albeit not by as much dBe uplink pilots across multiple cells in order to mitigaie
the infinite precision coordinated approach. Fig. 2 takes #t contamination in a massive MIMO system. The proposed
closer look at the cumulative distribution of the MSE. Ob-algorithm optimizes the pilots iteratively in closed forguar-
serve that the coordinated approach is far superior to all thanteeing a monotonic reduction of the weighted sum MSE of
other techniques in that it yields the smallest MSE in all thehe channel estimation throughoutthe network. Numergal r
percentiles. sults show that the proposed algorithm outperforms the con-
We now consider minimizing the weighted sum MSE ventional orthogonal pilot reuse method significantly joart
throughout the network. Because the absolute value of MSkrly for the cell-edge users and also improves upon a rgcent
is proportional to the channel magnitude, weighting MSEgroposed greedy method.
equally would give preference to the users with strong chan-
nels. To provide some measure of fairness, a possible heuris 6. ACKNOWLEDGEMENT
tic [?] is to weight the MSEs by, = 1/S5ik.
Fig. 3 shows a scatter plot of MSE vs. channel strengtflThe authors would like to thank Shahar Stein loushua and Dr.
for this weighted coordinated approach as compared t&oad Sohrabifor their help in the simulation part of this kvor
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