
Chapter 1

Blind Beamforming for IRS

without Channel Estimation

After reading this chapter you should be able to:

• Understand the necessity of sidestepping channel estimation for the IRS

beamforming in many real-world wireless networks to date.

• Examine the fundamental aspect of the standard method of RMS, i.e., how

fast the resulting SNR boost grows with the IRS size and the sample size.

• Understand the rationale behind a statistical blind beamforming method

called CSM, and why it guarantees a quadratic SNR boost in the IRS size.

• Interpret the CSM method from a variety of optimization perspectives in-

cluding the closest point projection and the phase retrieval.

1.1. Introduction

Passive beamforming, i.e., coordinating phase shifts across the reflective ele-

ments, lies at the core of the intelligent reflecting surface (IRS) technology.

Despite the intrinsic difference between passive beamforming and the conven-

tional active beamforming for the MIMO channels, many existing works on
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IRS still follow the traditional model-driven paradigm of first estimating chan-

nels and then optimizing phase shifts, thereby readily applying the classical

beamforming tools such as semidefinite relaxiation (SDR) [Luo et al., 2010],

weighted minimum mean square error (WMMSE) [Shi et al., 2011], and frac-

tional programming (FP) [Shen and Yu, 2018].

However, channel acquisition for an IRS-aided system could pose formidable

challenges in engineering practice, mainly in the following three respects:

i. Each reflected channel alone can be easily overwhelmed by the other channels

and noise, so it can be difficult to obtain precise estimation.

ii. One has to modify the current networking protocol (e.g., frame structure)

to enable channel estimation for IRS. Besides, some channel estimating al-

gorithms entail the full information of the received signal, but this is not

supported by many communication chips on the market.

iii. Channel estimation for the reflected channels may incur huge time complexity

if the IRS consists of a large number reflective elements.

In order to address the above issues, the past few years have seen a surge of

research interests in blind beamforming without relying on any channel knowl-

edge. Both [Psomas and Krikidis, 2021] and [Nadeem et al., 2021] advocate a

random rotation strategy for passive beamforming in the absence of the instan-

taneous channel information. Another line of studies [You et al., 2020, Ning

et al., 2021, Wang et al., 2022, Wang and Zhang, 2021] suggest simply trying

out all possible directions of the reflected beam; this procedure does not require

any channel information. However, the above beam sweeping approach is typi-

cally restricted to the millimeter/terahertz communication scenario with sharp

beams. And deep learning has been considered in this area. As opposed to [Liu

et al., 2020, Elbir et al., 2020, Gao et al., 2020, Liu et al., 2021, Huang et al.,
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2020, Feng et al., 2020] that use deep learning to either estimate channels or op-

timize phase shifts given channels, the recent work [Jiang et al., 2021] proposes

learning to directly map the received pilot signals to the passive beamform-

ing vector via deep neural networks. It is argued in [Jiang et al., 2021] that

such unified learning policy is capable of extracting more pertinent informa-

tion from the raw data. Differing from these neural net-based approaches, the

method called RFocus in [Arun and Balakrishnan, 2020] uses the statistics of

the received signal. The present chapter also pursues a statistical approach and

shows that the proposed blind beamforming method can strike provable better

performance than RFocus in [Arun and Balakrishnan, 2020]. Aside from the

theoretical justifications, we further demonstrate this novel blind beamforming

method through field tests in a commercial 5G network.

Throughout the chapter, we use the Bachmann-Landau notation exten-

sively: f(n) = O(g(n)) if there exists some c > 0 such that |f(n)| ≤ cg(n)

for n sufficiently large; f(n) = o(g(n)) if there exists some c > 0 such that

|f(n)| < cg(n) for n sufficiently large; f(n) = Ω(g(n)) if there exists some

c > 0 such that f(n) ≥ cg(n) for n sufficiently large; f(n) = Θ(g(n)) if

f(n) = O(g(n)) and f(n) = Ω(g(n)) both hold.

1.2. System Model

For ease of discussion, the majority of the present chapter focuses on the single-

user single-antenna transmission; the extension to the general case with multi-

ple users and multiple antennas is postponed till Section 1.5.3. Assume that the

IRS consists of a total of N reflective elements. Let hIn ∈ C be the channel from

the transmitter to the nth reflective element, and hIIn ∈ C the channel from
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the nth reflective element to the receiver. The cascaded channel hn associated

with the nth reflective element is then obtained as

hn = hInh
II
n , for n = 1, . . . , N. (1.1)

Let h0 ∈ C be the superposition of the rest channels from the transmitter to

the receiver (including the direct channel as well as those reflected channels

not due to the IRS). We frequently represent the above channels in a polar

form, i.e.,

hn = βne
jαn , for n = 0, . . . , N, (1.2)

where the channel magnitude βn ∈ (0, 1) and the channel phase αn ∈ (0, 2π].

Moreover, use θn ∈ (0, 2π] to denote the phase shift induced by the nth reflec-

tive element in its corresponding channel hn, and θ the passive beamforming

vector (θ1, . . . , θN ). Thus, for the transmit signal X ∈ C, the received signal

Y ∈ C is given by

Y =

(
h0 +

N∑
n=1

hne
jθn

)
X + Z, (1.3)

where a complex Gaussian random variable Z ∼ CN (0, σ2) models the additive

background noise. Further, for practical reasons, we assume that each θn is

selected from a prescribed discrete set

ΦK =
{
ω, 2ω, . . . ,Kω

}
, (1.4)

where K is the number of phase shift choices and the distance ω is given by

ω =
2π

K
. (1.5)
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For the field tests as shown in Section 1.6, we adopt K = 4 and ω = π/2,

namely the quadrature phase shifting.

Assuming a mean transmit power of P , i.e., E[|X|2] = P , the signal-to-noise

ratio (SNR) can be computed as

SNR =
E[|Y − Z|2]

E[|Z|2]
=

P

σ2

∣∣∣∣∣β0ejα0 +
N∑

n=1

βne
j(αn+θn)

∣∣∣∣∣
2

. (1.6)

Notice that we are only interested in how much the SNR could be improved

by configuring the IRS properly, rather than the specific value of SNR. Toward

this end, we define the baseline case without IRS to be

SNR0 =
Pβ2

0

σ2
, (1.7)

and consider the SNR boost f(θ) as follows:

f(θ) :=
SNR

SNR0
=

1

β2
0

∣∣∣∣∣β0ejα0 +
N∑

n=1

βne
j(αn+θn)

∣∣∣∣∣
2

. (1.8)

The IRS beamforming task is now formulated as a combinatorial optimization

problem of maximizing the SNR boost over the discrete phase shifts:

maximize
θ

f(θ) (1.9a)

subject to θn ∈ ΦK for n = 1, . . . , N. (1.9b)

We remark that the channel information {h0, . . . , hN} is not available in the

above problem setup. A common approach in the literature is to first estimate

channels and subsequently optimize θ explicitly in (1.9). Nevertheless, as elab-

orated in Section 1.3, channel acquisition can be quite costly in practice. A
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blind beamforming approach is then proposed to optimize θ in the absence of

channel information. As the main contribution of this chapter, we illustrate

a somewhat surprising result that a statistical blind beamforming method is

capable of reaching the global optimum without knowing the channels.

1.3. Random-Max Sampling (RMS)

The simplest method for blind beamforming is just to try out a bunch of

random samples of θ and then choose the best, referred to as the random-max

sampling (RMS) method. Specifically, we generate a total of T samples of θ

at random. For the tth sample denoted as θt = (θ1t, . . . , θNt), each entry θnt

is drawn uniformly and independently from the discrete set ΦK . The received

signal corresponding to the tth random sample is given by

Yt =

(
h0 +

N∑
n=1

hne
jθnt

)
Xt + Zt. (1.10)

The RMS method simply decides θ according to the received signal power, i.e.,

θRMS = θt⋆ where t⋆ = arg max
1≤t≤T

|Yt|2. (1.11)

Clearly, the sample size T plays a key role in the performance of RMS. Before

proceeding to the performance analysis, we first define the average per element

reflection power gain to be

β̄2 =
1

N

N∑
n=1

β2
n. (1.12)
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The following theorem shows how the SNR boost by RMS grows with the

sample size T and the IRS size N .

Theorem 1.1: Consider T i.i.d. random samples of θ uniformly drawn over

ΦK . The expected SNR boost achieved by the RMS method in (1.11) has the

following order bounds:

E
[
f(θRMS)

]
=

β̄2

β2
0

·Θ(N log T ) if T = o(
√
N), (1.13)

E
[
f(θRMS)

]
=

β̄2

β2
0

·O(N log T ) in general, (1.14)

where the expectation is taken over random samples of θ.

The proof of the above theorem is beyond the scope of this chapter. We

refer the interested readers to [Ren et al., 2021] for the mathematical details.

But how far is this scaling rate of RMS from the optimum? To answer

this question, we construct an upper bound on the SNR boost by assuming

that the channels are already known and also that each phase shift θn can be

arbitrarily chosen on (0, 2π]. It can be easily seen that under the above two

assumptions the maximum SNR boost is achieved when every phase-shifted

reflected channel hne
jθn is aligned with the direct channel h0 exactly. In other

words, each θn is optimally determined as

θn = α0 − αn. (1.15)

Plugging the above θn into (1.8) yields an upper bound on the achievable SNR

boost as stated in the following theorem.

7



Theorem 1.2: The SNR boost is bounded from above as

f(θ) ≤

(∑N
n=0 βn

)2
β2
0

, (1.16)

and thus it is at most quadratic in the number of reflective elements, i.e.,

f(θ) =
β̄2

β2
0

·O(N2). (1.17)

Consequently, the highest SNR boost we can expect for RMS (and also for

any other algorithms) is quadratic in N . According to Theorem 1.1, it takes

an exponential number of samples for RMS to reach this upper bound, i.e.,

T = Ω(2N ). Intuitively, RMS can figure out the optimal θ only after it has

almost exhausted the entire solution space of ΦN
K . But is it possible to figure

out the optimal solution by using merely a polynomial number of samples?

The next section aims to answer the above question.

1.4. Conditional Sample Mean (CSM)

In this section we propose a novel statistical method that is guaranteed to

achieve the quadratic SNR boost much more efficiently than RMS. We still

generate T random samples of θ in a uniform and independent fashion, only

that T just needs to be polynomially large as shown in the end of this section.

We begin by defining Qnk ⊆ {1, . . . , T} to be the subset of the indices of

all those random samples with θnt = kω, i.e.,

Qnk = {t : θnt = kω}, ∀n = 1, . . . , N and ∀k = 1, . . . ,K. (1.18)
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Algorithm 1 Conditional Sample Mean (CSM)

1: input: ΦK , N , T ;
2: for t = 1, 2, . . . , T do
3: generate θt = (θ1t, . . . , θNt) i.i.d. based on Φk;
4: measure received signal power |Yt|2 with θt;
5: end for
6: for n = 1, 2, . . . , N do
7: for k = 1, 2, . . . ,K do
8: compute Ê[|Y |2|θn = kω] according to (1.19);
9: end for

10: decide θCSM
n according to (1.20);

11: end for
12: output: θCSM = (θCSM

1 , . . . , θCSM
N ).

A conditional sample mean of the received signal power |Y |2 is computed within

each subset Qnk, denoted by

Ê[|Y |2 | θn = kω] =
1

|Qnk|
∑

t∈Qnk

|Yt|2. (1.19)

The main idea of the conditional sample mean (CSM) method is to choose

each θn such that the corresponding conditional sample mean is maximized:

θCSM
n = arg max

φ∈ΦK

Ê[|Y |2 | θn = φ]. (1.20)

The above method is summarized in Algorithm 1.

The intuition behind CSM follows. We use Ê[|Y |2|θn = kω] to measure

the average goodness of a particular choice θn = kω when the rest θm’s are

still pending. With all the phase shifts determined in this way simultaneously,

a kind of equilibrium among the N reflective elements can be reached. We

examine this equilibrium in the following theorem.

Theorem 1.3: Consider T i.i.d. random samples of θ uniformly drawn over
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ΦK . When K ≥ 3, the expected SNR boost achieved by the CSM method in

Algorithm 1 has a tight order bound:

E[f(θCSM)] =
β̄2

β2
0

·Θ(N2) if T = Ω(N2(logN)3), (1.21)

where the expectation is taken over random samples of θ.

Two observations in the above scaling law analysis of CSM are worth not-

ing. First, CSM requires only a polynomial number of random samples to attain

the quadratic SNR boost in N , which makes CSM much more practical than

the standard method of RMS. Second, the quadratic scaling rate of CSM holds

only when K ≥ 3; we will delve into this issue in Section 1.5.1.

1.5. Some Comments on CSM

1.5.1. Connection to Closest Point Projection

In Section 1.3 we assume that the channel information is already known and

also that each phase shift can be arbitrarily chosen on (0, 2π] as K → ∞, in

order to derive an upper bound on the SNR boost. The resulting optimal θn

is shown in (1.15). What if we only make the first assumption (i.e., channel

information available) whereas the number of phase shift choices K is still

finite?

A simple method under the above new setting is to project the relaxed

continuous solution, which is given in (1.15), to the closest point within the

discrete set ΦK , referred to as the closest point projection (CPP) method. If

the projection is performed in the Euclidean distance sense, then each θn is
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determined as

θCPP
n = arg min

φ∈ΦK

∣∣φ− α0 + αn

∣∣. (1.22)

CPP can be alternatively interpreted as choosing each θn such that hne
jθn is

rotated to the closest possible position to h0 on the complex plane. We are

interested in this CPP method because of its close connection to CSM, as

specified in the following theorem.

Theorem 1.4: The CSM method without channel information is equivalent

to the CPP method with channel information if the sample size is sufficiently

large, i.e.,

θCSM = θCPP as n → ∞. (1.23)

Proof. When the phase shift of the nth reflective element is fixed at kω,

the received signal is given by

Y =
(
h0 + hne

jkω
)
X +

 N∑
m=1,m ̸=n

hmejθm

X + Z. (1.24)

Furthermore, assuming that the rest phase shifts are randomly and inde-

pendently chosen from the discrete set ΦK , and also that X is i.i.d. with

E[|X|2] = P and Z is drawn i.i.d. from CN (0, σ2), the conditional expectation

of the received signal power can be computed as

E
[
|Y |2 | θn = kω

]
= Eθm,X,Z

∣∣∣∣∣∣
(
h0 + hne

jkω
)
X +

 N∑
m=1,m ̸=n

hmejθm

X + Z

∣∣∣∣∣∣
2

=
∣∣∣h0 + hne

jkω
∣∣∣2 P +

N∑
m=1,m ̸=n

β2
mP + σ2

= 2β0βnP cos(kω − α0 + αn) +
N∑

m=0

β2
mP + σ2. (1.25)
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By the law of large numbers, the conditional sample mean Ê[|Y |2 | θn = kω]

in (1.19) approaches the above value when the sample size increases. Conse-

quently, as T → ∞, the CSM method in (1.20) boils down to

θCSM = arg max
θn∈ΦK

E
[
|Y |2 | θn = kω

]
(1.26)

= arg max
θn∈ΦK

cos(θn − α0 + αn). (1.27)

Clearly, the solution of (1.27) is to make θn close to α0−αn as much as possible,

namely the CPP method. The equivalence between CPP and CSM as T → ∞

is thus established.

We further show that CPP yields a constant approximation ratio factor for

any fixed K.

Theorem 1.5: The CPP method in (1.22) satisfies

cos2(π/K) · f⋆ ≤ f(θCPP) ≤ f⋆, (1.28)

where f⋆ is the maximum SNR boost.

Proof. The right inequality is evident. We focus on showing the left in-

equality in what follows:

f(θCPP) =
1

β2
0

·

∣∣∣∣∣β0ejα0 +
N∑

n=1

βne
j(θCPP

n +αn)

∣∣∣∣∣
2

(1.29a)

=
1

β2
0

·

∣∣∣∣∣β0 +
N∑

n=1

βne
j(θCPP

n −α0+αn)

∣∣∣∣∣
2

(1.29b)

≥ 1

β2
0

·

∣∣∣∣∣β0 +
N∑

n=1

βn cos
(
θCPP
n − α0 + αn

)∣∣∣∣∣
2

(1.29c)
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Figure 1.1: Consider four sectors {S1,S2,S3,S4}; each sector spans an angle of

π/K. For N = 2, assume that h0 is located right between S2 and S3, and that h1 is

inside S2 but arbitrarily close to S1, while h2 and h1 are symmetric about h0. When

K = 4 and |h1| = |h2|, it follows that h1 and h2 cancel out each other under CPP or

CSM, so IRS does not boost SNR.

≥ 1

β2
0

·

(
β0 +

N∑
n=1

βn cos(π/K)

)2

(1.29d)

≥ cos2(ω/2)

β2
0

·

(
N∑

n=0

βn

)2

(1.29e)

≥ cos2(ω/2) · f⋆, (1.29f)

where (1.29c) follows since each βne
j(θCPP

n −α0+αn) = βn cos(θ
CPP
n − α0 + αn) +

jβn sin(θ
CPP
n −α0+αn) and the removal of the sin component does not decrease

the absolute square, (1.29d) follows by the fact that |θCPP
n − α0 + αn| ≤ π/K

under the closest point projection, and (1.29f) follows by the upper bound in

Theorem 1.2. The proof is then completed.

Incorporating the above result into Theorem 1.4 partly verifies the scaling

law of CSM in Theorem 1.3, as stated in the following corollary.

Corollary 1.1: For CPP, the approximation ratio cos2(π/K) ≥ 0.5 if K ≥ 3,
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Figure 1.2: Consider four sectors {S1,S2,S3,S4}; each sector spans an angle of

π/K. For N = 2, assume that h0 is located right between S2 and S3, and that h1 is

inside S2 but arbitrarily close to S1, while h2 and h1 are symmetric about h0. When

K = 4 and |h1| = |h2|, it follows that h1 and h2 cancel out each other under CPP or

CSM, so IRS does not boost SNR.

whereas cos2(π/K) = 0 if K = 2. Consequently, as T → ∞, CSM optimally

reaches a quadratic SNR boost in N if K ≥ 3, whereas its SNR boost cannot

be bounded from below if K = 2.

Fig. 1.1 gives a concrete example to illustrate the failure of CSM when K =

2. Notice that the above corollary only claims that CSM would be equivalent to

CPP when the sample size T is sufficiently large. It entails considerable efforts

to verify the specific threshold on T as stated in Theorem 1.3; the interested

readers are referred to [Ren et al., 2021] for the complete proof of Theorem

1.3.

Furthermore, an enhanced CSM can yield a quadratic SNR boost in the
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number of reflective elements N for any K ≥ 2. The main idea is to improve

the approximation ratio factor of CPP, as shown in Fig. 1.2. Observe that the

enhanced CSM yields an approximation ratio factor of 0.5 even at K = 2, so

it guarantees a quadratic SNR boost for the binary beamforming case. More

details can be found in [Ren et al., 2021].

1.5.2. Connection to Phase Retrieval

Although CSM does not perform channel estimation explicitly, we can some-

how retrieve the phase information of the channels {h0, h1, . . . , hN} from the

beamforming decision θ by CSM.

When all the θn’s are uniformly and independently distributed over ΦK ,

the expectation of the received signal power is given by

E[|Y |2] = β2
0P +

N∑
m=1

β2
mP + σ2. (1.30)

When a particular θn is fixed at kω and the rest θm’s are randomized, the

resulting conditional expectation of the received signal power is given by

E
[
|Y |2 | θn = kω

]
= P

∣∣h0 + hne
jkω
∣∣2 + ∑

m ̸=n

β2
mP + σ2. (1.31)

We use Jnk to denote the difference between the above two expectations, which

can be computed as

Jnk = E[|Y |2 | θn = kω]− E[|Y |2] (1.32a)

= 2β0βnP cos(kω − α0 + αn). (1.32b)
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Observe that the value of Jnk depends on the phase difference

∆n = α0 − αn (1.33)

between the direct channel h0 and the reflected channel hn.

Moreover, the above expectation difference can be evaluated empirically

based on the random samples, i.e.,

Ĵnk =
1

|Qnk|
∑

t∈Qnk

|Yt|2 −
1

T

T∑
t=1

|Yt|2. (1.34)

The main idea of phase retrieval is to recover the phase difference ∆n through

minimizing the gap between Jnk and Ĵnk. For instance, if we consider a square-

max loss function

Ln(∆n) =

∣∣∣∣ max
1≤k≤K

{
Jnk
}
− max

1≤k≤K

{
Ĵnk
}∣∣∣∣2 , (1.35)

then the phase retrieval problem is formulated as

minimize
{∆n}

N∑
n=1

Ln(∆n) (1.36a)

subject to 0 ≤ ∆n < 2π, for n = 1, . . . , N. (1.36b)

The above problem can be optimally solved as

∆n = k0ω where k0 = arg max
1≤k≤K

Ê[|Y |2 | θn = kω]. (1.37)

An analogy can be immediately seen between the above solution and the CSM

method in (1.20), both of which seek the phase shift θn ∈ ΦK to maximize the
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conditional sample mean Ê[|Y |2 | θn = kω]. Thus, CSM boils down to recovering

the phase difference ∆n according to the loss function in (1.35).

But we could have used a different loss function in the phase retrieval. If

Ln(∆n) in problem (1.36) is replaced with the following sum-of-squares loss

function

L′
n(∆n) =

K∑
k=1

∣∣Jnk − Ĵnk
∣∣2, (1.38)

the solution of ∆n becomes

∆n =


− arctan

Fn

En
+

π

2
if En ≥ 0,

− arctan
Fn

En
− π

2
if En < 0,

(1.39)

where

En =

K∑
k=1

Ĵnk sin(kω) and Fn =

K∑
k=1

Ĵnk cos(kω). (1.40)

If the closest point projection is performed based on the above ∆n, i.e., θn =

argminφ∈ΦK
|φ−∆n|, we would arrive at another version of CSM. Furthermore,

it turns out that every choice of loss function in the phase retrieval problem

(1.36) can be recognized as a variation of the CSM method.

1.5.3. CSM for General Utility Functions

The CSM method can be further extended to a general utility function in order

to account for multiple users and multiple antennas. For each random sample

t = 1, . . . , T , we now measure a utility value Ut ∈ R at the receiver side. For

instance, if we have multiple users and aim at a max-min fairness, the utility

could be set to the minimum SNR among the users.
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Figure 1.3: A panoramic view of the field test site. The base station is located on a

20-meter-high terrace while the user terminal is located inside an underground

parking lot. The IRS is placed at the entrance of the parking lot. The IRS is

approximately 250 meters away from the base station, and the user terminals are

approximately 40 meters away from the IRS.

Recall the conditional sample subset Qnk in (1.18). We now compute the

conditional sample mean of U within each subset Qnk, i.e.,

Ê[U | θn = kω] =
1

|Qnk|
∑

t∈Qnk

Ut. (1.41)

Following Algorithm 1, we decide each θn according to the respective condi-

tional sample mean, i.e.,

θCSM
n = arg max

φ∈ΦK

Ê[U | θn = φ]. (1.42)

Deciding the optimal utility function for the generalized CSM remains an open

problem.
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Figure 1.4: The ON-OFF state of a PIN diode results in two distinct resonance

frequencies in the series RLC circuit, which correspond to two phase shifts. Further,

with a pair of PIN diodes integrated into each reflective element, we can realize four

phase shifts by controlling the respective ON-OFF states of the two PIN diodes.

1.6. Field Tests

In this section we demonstrate the performance of the blind beamforming ap-

proach through prototype tests in the real-world wireless environment. Our

tests are carried out in a public downlink network over a 200 MHz wide spec-

trum band centered at 2.6 GHz. It is worth pointing out that our blind beam-

forming method does not require any collaboration from the service provider

side. Thus, the IRS can be deployed and then configured in a plug-and-play

fashion.

The hardware realization of each reflective element is illustrated in Fig. 1.4.

A quadrature beamforming with θn ∈ {0, π/2, π, 3π/2} is implemented by us-

ing a pair of PIN diodes at each reflective element. Moreover, as shown in

Fig. 1.5, the IRS is formed by 16 “reflecting tiles”—a tiny IRS prototype that

is 50 cm× 50 cm large—arranged in a 4× 4 array. Each reflecting tile consists

of 16 reflective elements, so the assembled large IRS consists of 256 reflective

elements in total. There are 4 phase shift choices {0, π/2, π, 3π/2} for each

individual reflective element.

As shown in Fig. 1.3 and Fig. 1.6, the base station is located on a 20-meter-
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Figure 1.5: The IRS is formed by a 4× 4 array of reflecting tiles. Each reflecting tile is

50cm×50cm large and consists of 16 reflective elements.

Table 1.1: Performance of the different algorithms

SISO SISO MIMO
Algorithm RSRP boost (dB) SINR boost (dB) SE increment (bps/Hz)

CSM 4.02 3.57 2.02

RMS -3.93 -3.84 1.97

OFF -1.69 -1.69 0.77

high terrace while the user terminal is located in an underground parking lot.

There is no line-of-sight propagation from the base station to the user terminal.

The IRS is placed outdoors near the entrance of the parking lot. The distance

from the base station to the IRS is approximately 250 meters; the distance from

the IRS to the user terminal is approximately 40 meters. It is worth remarking

that the wireless environment is highly volatile in our case because of the busy

traffic in the parking lot, as can be observed from Fig. 1.7.

We use the sample size T = 2560 (i.e., T = 10N) for both RMS and CSM.

Moreover, we include a baseline method called “OFF”, which simply fixes the

phase shift θn at the initial state without beamforming.

We start with the single-input single-output (SISO) transmission, aiming
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Figure 1.6: A satellite image of the field test site. The base station and the IRS are

outdoor while the user terminals are indoor.

to improve the SNR boost. There are two measurements: Reference Signal

Received Power (RSRP) and Signal-to-Interference-plus-Noise Ratio (SINR).

Notice that the SNR cannot be measured directly because of co-channel inter-

ference. Following the definition of the SNR boost, we let the RSRP (or SINR)

boost be the ratio between the achieved RSRP (or SINR) and the baseline

RSRP (or SINR) without IRS. Fig. 1.9 shows the RSRP boosts achieved by

the various methods. It can be seen that CSM outperforms the other meth-

ods significantly. CSM gives an approximately 5 dB improvement upon CSM

and OFF. As shown in the figure, although CSM encounters two sharp drops,

which are due to the shadowing effect caused by vehicles, its overall perfor-

mance is still more consistent over time than RMS and OFF. Observe from

Fig. 1.9 that the RSRP boost by OFF is mostly below 0 dB; the reason is that

the reflected signals without proper beamforming can result in a destructive

superposition. Observe also that RMS yields the worst RSRP performance,

even 4 dB lower than not using IRS. This surprising result indicates that, in a

complicated wireless environment with interference and noise, the beamformer
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Figure 1.7: The view from the user terminal toward the IRS.

decision based on the best single sample is not reliable.

We further compare the SINR boosts of the various methods in Fig. 1.8. It

can be seen that the SINR boosts and the RSRP boosts have similar profiles.

The average RSRP boosts and the average SINR boosts are summarized in Ta-

ble 1.1. According to the table, the SINR gain is smaller than the RSRP gain.

One reason for this gain reduction is that IRS incurs additional reflected inter-

ference. Nevertheless, the constructive effect on the desired signals outweighs

that on the interfering signals. As a result, CSM can still bring considerable

performance gains as compared to the benchmark methods and not using CSI.

Moreover, we consider the MIMO transmission. In our case, the base sta-

tion has 64 transmit antennas while the user terminal has 4 receive antennas,

so at most 4 data streams are supported. Because the base station is a black

box to us, how the transmit precoding is performed is unknown. We use the

generalized CSM in Section 1.5.3 and let the utility be the Spectral Efficiency

(SE). Thus, we measure the SE in bps/Hz at the user terminal for each random

sample. Fig. 1.10 shows the SE increments by the various algorithms against
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Figure 1.8: SINR boost for SISO transmission.
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Figure 1.9: RSRP boost for SISO transmission.
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Figure 1.10: SE increment for MIMO transmission.

the baseline SE without IRS. Observe that all the algorithms can bring im-

provements, although OFF occasionally gives negative effects. The figure shows

that RMS becomes more robust in the MIMO case. Actually, RMS is some-

times even better than CSM, but it still has inferior performance on average.

The average SE increment results summarized in Table 1.1 agree with what

we observe from Fig. 1.10.

1.7. Conclusion

In this chapter we consider passive beamforming for IRS without any channel

information, because channel acquisition can be costly and technically difficult

in practice. We begin with the standard method of RMS—which simply tries

out different beamformer samples at random and chooses the best, but it re-

quires an exponentially large number of samples to achieve a quadratic SNR

boost in the number of reflective elements. In contrast, the proposed statistical
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blind beamforming method called CSM is capable of achieving the quadratic

SNR boost by using merely a polynomial number of samples. We then examine

CSM from the closest point projection and the phase retrieval points of view.

Furthermore, CSM can be enhanced to reach a higher approximation ratio and

can be extended to the multi-user multi-antenna scenario by means of utility

function. Finally, we demonstrate the effectiveness of CSM in improving the

data transmission in a commercial 5G network.
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