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Abstract—There is considerable interest in the use of fractional
programming (FP) for the communication system design because
many problems in this area are fractionally structured. Notably,
max-FP and min-FP are not interchangeable in general if there
are multiple ratios, so the two types of FP are often dealt with
separately in the existing literature. As a result, an FP method for
maximizing the signal-to-interference-plus-noise ratios (SINRs)
typically cannot be used for minimizing the Cramér-Rao bounds
(CRBs). In contrast, this work proposes a unified approach
that bridges the gap between max-FP and min-FP. Particularly,
we examine the theoretical basis of this unified approach from
a minorization-maximization (MM) perspective, and in return
obtain a matrix extension of this new FP technique. Moreover,
this work presents two application cases: (i) joint radar sensing
and (ii) multi-cell secure transmission, neither of which can be
efficiently addressed by the existing FP tools.

Index Terms—Multi-ratio fractional programming (FP), max-
FP, min-FP, secure transmission, Cramér-Rao bound, sensing.

I. INTRODUCTION

In a broad sense, fractional programming (FP) is a class of
mathematical optimizations whose main components are ratio
terms. The studies in the literature are mostly focused on the
concave-convex sum-of-ratios maximization problem

maximize
x∈X

N∑
n=1

An(x)

Bn(x)
, (1)

where each An(x) is a concave nonnegative function and each
Bn(x) is a convex positive function over the nonempty convex
constraint set X , or its minimization counterpart

minimize
x∈X

N∑
n=1

An(x)

Bn(x)
(2)

with the convexity and the concavity assumptions exchanged
between An(x) and Bn(x), while the rest settings remain the
same. Notice that neither (1) nor (2) is a convex problem in
general even if the objective function comprises only one ratio.

A classical result is that problem (1) with N = 1, i.e., the
single-ratio max-FP, can be efficiently solved via the Charnes-
Cooper algorithm [1], [2] or Dinkelbach’s algorithm [3]. In
particular, since minimizing a ratio is equivalent to maximizing
its reciprocal, problem (2) with N = 1 can be readily recast
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to (1) by flipping the ratio, and hence the above traditional
algorithms work for the single-ratio min-FP as well. However,
when there are multiple ratios, it is difficult to rewrite min-
FP as max-FP, and vice versa, so these two types of FP are
dealt with separately in most previous studies. In contrast,
we set out a unified approach to max-FP and min-FP, and
further develop a matrix extension based on the minorization-
maximization (MM) theory in order to account for the ratios
between matrices.

In the past studies of FP, Dinkelbach’s algorithm [3] has
long been the most popular method for the single-ratio FP.
Although Dinkelbach’s algorithm can be extended to the multi-
ratio FP [4] with a max-min objective, its extension to the
other multi-ratio cases including (1) and (2) remains an open
problem. An extension attempt in [5] aims at the sum-of-
ratios max-FP in (1), but a disproof of this result is given
in [6] through a counterexample. Another work [7] shows
that the min-FP in (2) amounts to minimizing the difference
between two convex functions. Furthermore, [8] shows the
NP-completeness of the sum-of-ratios problem (either max
or min), and consequently many existing methods resort to
branch and bound (B&B), e.g., [8]–[12] consider max-FP
while [13]–[17] consider min-FP. In particular, the bounds
used for B&B are not exchangeable between max-FP and min-
FP. To avoid the exponential running time, other works suggest
various heuristic algorithms, e.g., the “state space reduction”
method [6] and the “harmony search” method [18].

Energy efficiency maximization for wireless links is one of
the earliest applications of FP in the communication field. A
survey may be found in [19]. In order to apply Dinkelbach’s
algorithm [3] or its generalized version [4], the energy effi-
ciency problems in [19] are restricted to the single-link case
and the max-min case. In comparison, the quadratic transform
proposed in the more recent work [20] can tackle a much
wider range of multi-ratio max-FP problems. Nevertheless, the
use of the quadratic transform is still limited due to the gap
between max-FP and min-FP. For instance, it does not work
for the Cramér-Rao bounds (CRBs) minimization in a radar
sensing task. The proposed unified approach can be viewed
as a further generalization of the quadratic transform [20] that
is capable of maximizing the signal-to-interference-plus-noise
ratios (SINRs) and minimizing the CRBs. We illustrate the
use of this new FP technique through two application cases:
(i) joint radar sensing and (ii) multi-cell secure transmission.



II. OPTIMIZATION TECHNIQUE

A. Max-FP Problems

We start with a brief review of the existing multi-ratio max-
FP method called the quadratic transform.

Proposition 1 (Quadratic Transform [20]): The sum-of-
ratios maximization problem in (1) is equivalent to

maximize
x∈X ,yn∈R

N∑
n=1

(
2yn
√

An(x)− y2nBn(x)
)

(3)

in the sense that x⋆ is a solution to (1) if and only if (x⋆, {y⋆n})
is a solution to (3), where {yn} is a set of auxiliary variables.

The benefit of transforming (1) into (3) is that the optimiza-
tion over x (for fixed {yn}) is a convex problem. Moreover,
when x is held fixed, each yn can be optimally updated as

y⋆n =

√
An(x)

Bn(x)
. (4)

Thus, an alternating optimization between x and {yn} can
be carried out efficiently in the new problem. It is shown in
[20] that the alternating optimization yields a nondecreasing
convergence of the objective value. Furthermore, if An(x) and
Bn(x) are differentiable, then it attains a stationary point.

B. Min-FP Problems

We now consider the min-FP in (2). A natural idea is to
reuse the above quadratic transform. One may rewrite (2) as

maximize
x∈X

N∑
n=1

An(x)

−Bn(x)
(5)

in order to apply the max-FP technique. But this is problematic
because (5) violates the positive-denominator requirement.
Alternatively, one may flip every ratio and convert (2) to

maximize
x∈X

N∑
n=1

Bn(x)

An(x)
. (6)

It can be shown that the above new problem boils down to
using the harmonic mean to approximate the algebraic mean
in (2). However, this approximation can be fairly loose.

The first main result of this paper is to show how the min-FP
can be rewritten for alternating optimization.

Proposition 2 (Inverse Quadratic Transform): The sum-of-
ratios minimization problem in (2) is equivalent to

minimize
x∈X , yn∈R

N∑
n=1

1

2yn
√
Bn(x)− y2nAn(x)

(7a)

subject to 2yn
√
Bn(x)− y2nAn(x) > 0, ∀n (7b)

in the sense that x⋆ is a solution to (2) if and only if (x⋆, {y⋆n})
is a solution to (7), where {yn} is a set of auxiliary variables.

Proof: When x is fixed, each yn in (7) can be op-
timally determined as y⋆n =

√
Bn(x)/An(x). Substituting

the above y⋆n into the new objective function (7a) recovers
the original objective function in (2). Moreover, the new
constraint (7b) can be satisfied automatically whenever y⋆n =

√
Bn(x)/An(x) regardless of the value of x. The equivalence

is then established.
Most importantly, for the new problem in (7), x and {yn}

can be efficiently optimized in an alternating fashion. When
yn’s are all fixed, notice that (7) is convex in x. When x is
fixed, yn can be optimally determined as

y⋆n =

√
Bn(x)

An(x)
. (8)

Unlike the max-FP case, we need the additional constraint
(7b) for the min-FP reformulation. Otherwise, each yn would
tend to 0 from left and then the alternating optimization fails.

C. Mixed Max-and-Min FP Problems

We propose putting max-FP and min-FP in the same prob-
lem. Let each f+

n : R → R be a concave increasing function
for 1 ≤ n ≤ N0, and let each f−

n : R → R be a concave
decreasing function for N0 < n ≤ N . The resulting mixed
max-and-min FP problem is

maximize
x∈X

N0∑
n=1

f+
n

(
An(x)

Bn(x)

)
+

N∑
n=N0+1

f−
n

(
An(x)

Bn(x)

)
, (9)

where the assumption of An(x) and Bn(x) inside each
f+
n (resp. f−

n ) follows that of the max-FP (resp. min-FP).
Intuitively, we wish to maximize all the ratios inside f+

n and
minimize all the ratios inside f−

n .
Proposition 3 (Unified Quadratic Transform): The mixed

max-and-min FP problem in (9) is equivalent to

maximize
x∈X , yn∈R

N0∑
n=1

f+
n

(
2yn
√

An(x)− y2nBn(x)
)
+

N∑
n=N0+1

f−
n

(
1

2yn
√

Bn(x)− y2nAn(x)

)
(10a)

subject to 2yn
√
Bn(x)− y2nAn(x) > 0, ∀n > N0 (10b)

in the sense that x⋆ is a solution to (9) if and only if (x⋆, {y⋆n})
is a solution to (10), where {yn} is a set of auxiliary variables.

The above result can be readily verified by combining the
proof of quadratic transform [20] and the proof of inverse
quadratic transform from the last subsection. Again, an alter-
nating optimization method can be carried out for the above
new problem. When x is fixed, those yn’s inside f+

n are
updated according to (4) and those yn’s inside f−

n are updated
according to (8); when yn’s are all fixed, x in (10) can be
optimally updated via convex optimization. Next, we draw
further insights into this unified method by the MM theory.

D. Connection to MM and Matrix Extension

It is worth looking at Proposition 3 from an MM point
of view. Following [21], We denote by g(x|x̂) the function
g : X → R parameterized by x̂ with the input x ∈ X .

The optimal updates of y⋆n in (4) and (8) are treated as two
functions of x:

Y +
n (x) =

√
An(x)

Bn(x)
and Y −

n (x) =

√
Bn(x)

An(x)
. (11)



We then define g(x|x̂) in our case to be

g(x|x̂) =
∑
n≤N0

f+
n

(
2Y +

n (x̂)
√
An(x)− (Y +

n (x̂))2Bn(x)
)

+
∑
n>N0

f−
n

(
1

2Y −
n (x̂)

√
Bn(x)− (Y −

n (x̂))2An(x)

)
(12)

Some algebra shows that

g(x̂|x̂) =
∑
n≤N0

f+
n

(
An(x̂)

Bn(x̂)

)
+
∑
n>N0

f−
n

(
An(x̂)

Bn(x̂)

)
,

g(x|x̂) = g(x|x).

Thus, g(x|x̂) is a surrogate function [22] with respect to the
mixed max-and-min objective in (9). In light of the MM theory
[22], we immediately have the following result.

Proposition 4 (Convergence Analysis): The alternating op-
timization between x and {yn} in (10) yields a nondecreasing
convergence of the original mixed max-and-min FP objective
in (9). Furthermore, if all the functions {f+

n , f−
n , An, Bn} are

differentiable, then the alternating optimization converges to a
stationary point of the original problem (9).

Moreover, by generalizing the surrogate function (12) for
the matrix case, we obtain a matrix extension of Proposition
3. Now assume that An(x) ∈ Hd×d

+ is positive semi-definite
and Bn(x) ∈ Hd×d

++ is positive definite. We denote by√
M ∈ Cd×ℓ the square root of M for some ℓ ≤ d, i.e.,√
M(

√
M)H = M . Let f+

n : Hℓ×ℓ
+ → R be a concave

increasing function so that f+
n (M) > f+

n (M ′) if M ≻ M ′.
Likewise, let f−

n : Hℓ×ℓ
+ → R be a concave decreasing

function so that f−
n (M) < f−

n (M ′) if M ≻ M ′. Further,
assume that f−

n ((
√
A

H
B−1

√
A)−1) = f−

n (
√
B

H
A−1

√
B).

We then state the matrix extension of the unified quadratic
transform in the following proposition without proof.

Proposition 5 (Matrix Extension): The mixed max-and-min
matrix FP problem

maximize
x∈X

∑
n≤N0

f+
n

(√
A

H

n (x)B−1
n (x)

√
An(x)

)
+
∑
n>N0

f−
n

(√
A

H

n (x)B−1
n (x)

√
An(x)

)
, (13)

is equivalent to

maximize
x∈X ,Yn∈Cd×ℓ

∑
n≤N0

f+
n

(
Q+

n

)
+
∑
n>N0

f−
n

(
(Q−

n )
−1
)

(14a)

subject to Q−
n ≻ 0, ∀n > N0, (14b)

with the shorthand

Q+
n =

√
A

H

n (x)Yn + Y H
n

√
An(x)− Y H

n Bn(x)Yn, (15)

Q−
n =

√
B

H

n (x)Yn + Y H
n

√
Bn(x)− Y H

n An(x)Yn, (16)

where {Yn ∈ Cd×ℓ} is a set of auxiliary matrix variables.
For the new problem in (14), x and {Yn} can be efficiently
optimized in an alternating fashion. When x is fixed, those
Yn’s inside Q+

n are updated as Yn = B−1
n (x)

√
An(x) and

those Yn’s inside Q−1
n are updated as Yn = A−1

n (x)
√
Bn(x);

Radar 1

Radar 2

Point target

Fig. 1. Two radar sets detect a common point target in the same spectrum
band. The dashed lines represent the interference between them.

when Yn’s are all fixed, x in (14) can be optimally updated
via convex optimization.

III. APPLICATION CASES

A. Joint Radar Sensing
Consider M radar sets that work on the same spectrum

band to detect a common point target. Assume that the radar
set m has NT

m transmit antennas and NR
m receive antennas,

both arranged as a half-wavelength spaced uniform linear
array (ULA). Let L be the number of samples taken of
the echo signal at each radar set. For each radar set m,
denote by θm the direction of arrival (DOA) of the target as
illustrated in Fig. 1, Sm ∈ CNT

m×L the transmit waveform
matrix, aT

m(θm) ∈ CNT
m×1 the steering vector of the transmit

antennas, aRm(θm) ∈ CNR
m×1 the steering vector of the receive

antennas, and Zm ∼ CN (0, σ2
mINR

m
) the background noise.

Moreover, for a pair of radar sets m and m′, let βmm′ be the
reflection coefficient from radar m′ to radar m (which depends
on the pathloss and the radar cross section). Thus, the sampled
echo signal Fm ∈ CNR

m×L at the radar set m is given by

Fm =

M∑
m′=1

βmm′aR
m(θm)(aT

m′(θm′))HSm′ +Zm. (17)

Each radar set m aims to estimate the DoA θm based on Fm.
We seek the optimal waveform design of each Sm under the
power constraint Pm, i.e., with the squared Frobenius norm
∥Sm∥2F ≤ Pm, in order to minimize the sum mean squared
error (MSE) of all the θm estimates.

But the MSE of each θm is difficult to evaluate directly. A
common practice is to use the CRB to approximate the actual
MSE, as discussed in the sequel. Define the response matrix

Gmm′ = βmm′aR
m(θm)(aT

m′(θm′))H . (18)

Then the vectorization fm = vec(Fm) can be computed as

fm = (IL⊗Gmm)sm+
∑

m′ ̸=m

(IL⊗Gmm′)sm′ +zm, (19)

where sm = vec(Sm), and zm = vec(Zm). Letting f̂m =
fm − (IL ⊗Gmm)sm, compute Km = E[f̂mf̂H

m ] as

Km =
∑

m′ ̸=m

(IL ⊗Gmm′) sm′sHm′ (IL ⊗Gmm′)
H

+ σ2
mILNR

m
. (20)



According to [23], the Fisher information about θm is

Jm (θm) = 2sHm(IL ⊗ Ġmm)HK−1
m (IL ⊗ Ġmm)sm, (21)

where Ġmm is the partial derivative of Gmm with respect to
θm. Since the CRB amounts to the reciprocal of the Fisher
information, the sum-of-MSEs problem can be approximated
as the following sum-of-CRBs problem:

minimize
sm

M∑
m=1

1

Jm(θm)
(22a)

subject to ∥sm∥2 ≤ Pm, ∀m. (22b)

In order to apply the proposed unified approach, one may
rewrite (22) in the standard form as in Proposition 5:

maximize
sm

M∑
m=1

f+
m

(√
V

H

mK−1
m

√
V m

)
(23a)

subject to ∥sm∥2 ≤ Pm, ∀m, (23b)

where
√
V m =

(
IL ⊗ Ġmm

)
sm and f+

m(c) = −1/(2c).
However, the matrix denominator Km is not convex in sm,

so the optimization of sm is still difficult even after applying
the unified quadratic transform. We propose addressing this
issue by the Schur complement. As a result, (23) is recast to

maximize
sm,Um

M∑
m=1

f+
m

(√
V

H

mΛ−1
m

√
V m

)
(24a)

subject to ∥sm∥2 ≤ Pm, ∀m (24b)

Um ∈ CLNT
m×LNT

m , ∀m (24c)[
Um sm
sHm 1

]
⪰ 0, ∀m, (24d)

where Λm =
∑

m′ ̸=m (IL ⊗Gmm′)Um′ (IL ⊗Gmm′)
H

+

σ2
mI . Applying the unified quadratic transform to the above

problem yields the following reformulation:

maximize
sm,Um,Ym

M∑
m=1

f+
m

(
Q+

m

)
(25a)

subject to (24b)–(24d) (25b)

Ym ∈ CLNR
m , ∀m, (25c)

where Q+
m =

√
V

H

mYm + Y H
m

√
V m − Y H

m ΛmYm. Observe
that the above problem is jointly convex in {sm} and {Um}
when {Ym} is fixed, while each Ym is iteratively updated as
Y ⋆
m = Λ−1

m

√
V m.

The simulation setting follows. Consider 5 radar sets with
L = 4. For m = 1, 2, . . . , 5, let NT

m in order be (4, 2, 2, 2, 2),
let NR

m in order be (6, 4, 4, 4, 4), and let θm in order be
( 16π,

1
3π,

1
4π,

2
5π,

3
7π). Let every βmm′ = 1 and every Pm =

30 dBm. We compare the proposed method with separate
successive convex approximation in [24]. As shown in Fig. 2,
the benchmark algorithm converges faster than the proposed
algorithm, and yet the latter ultimately achieves a much lower
sum of the CRBs. The convergence of the proposed method is
around 70% lower than the starting point and is around 25%
lower than that of the existing method in [24].
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Fig. 2. Minimizing sum of CRBs across 5 radar sets.

B. Secure Transmission

Consider L base-stations (BSs) each serving a legitimate
downlink user terminal. Assume that the first K (K ≤ L) BSs
face one eavesdropper each. We use pi to denote the transmit
power of BS i, hji ∈ C the channel from BS i to legitimate
user j, h̃ki ∈ C the channel from BS i to eavesdropper k,
σ2
i the background noise power at legitimate user i, and σ̃2

k

the background noise power at eavesdropper k. Assuming that
cross-cell interference is treated as noise, the achievable secure
data rate of BS i = 1, . . . ,K with eavesdropper is given by

Ri = log

(
1 +

|hii|2pi∑
j ̸=i |hij |2pj + σ2

i

)

− log

(
1 +

|h̃ii|2pi∑
j ̸=i |h̃ij |2pj + σ̃2

i

)
, (26)

while the data rate of BS i = K + 1, . . . , L is given by

Ri = log

(
1 +

|hii|2pi∑
j ̸=i |hij |2pj + σ2

i

)
. (27)

We seek the optimal powers (p1, . . . , pL) that maximize the
sum rates under the power constraint P , i.e.,

maximize
pi

L∑
i=1

Ri (28a)

subject to 0 ≤ pi ≤ P, for i = 1, . . . , L. (28b)

We remark that the above problem is a mixed max-and-min
FP problem, so the existing quadratic transform in [20] does
not work for it. But the proposed unified quadratic transform
is applicable here. First, rewrite the objective function as

L∑
i=1

Ri =

L∑
i=1

log

(
1 +

|hii|2pi∑L
j=1,j ̸=i |hij |2pj + σ2

i

)

+

K∑
k=1

log

(
1− |h̃kk|2pk∑L

j=1 |h̃kj |2pj + σ̃2
k

)
. (29)
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Fig. 3. Tradeoff between the sum-rates R1 + R2 at risk of eavesdropping
and the sum-rates R3 +R4 +R5 free of eavesdropping.

We now treat each |hii|2pi∑L
j=1,j ̸=i |hij |2pj+σ2

i

as the ratio nested in

the concave increasing function f+
i (r) = log(1 + r), for i =

1, . . . , L, and treat each |h̃kk|2pk∑L
j=1 |h̃kj |2pj+σ̃2

k

as the ratio nested in

the concave decreasing function f−
k (r) = log(1− r), for k =

1, . . . ,K. Thus, the unified quadratic transform in Proposition
3 immediately applies. The resulting new problem is

maximize
pi,yi,ỹk

L∑
i=1

log(1 +Q+
i ) +

K∑
k=1

log

(
1− 1

Q−
k

)
(30a)

subject to 0 ≤ pi ≤ P, for i = 1, . . . , L (30b)

Q−
k > 0, for k = 1, . . . ,K, (30c)

where Q+
i = 2yi

√
|hii|2pi − y2i

(∑
j ̸=i |hij |2pj + σ2

i

)
and

Q−
k = 2ỹk

√∑
j |h̃kj |2pj + σ̃2

k − ỹ2k|h̃kk|2pk.
Again, in an iterative fashion, {pi} can be efficiently up-

dated via convex optimization when {yi, ỹk} are held fixed,
and then {yi, ỹk} are updated according to (4) and (8).

For the simulation, we set L = 5, K = 2, σ2
i =

−90 dBm, σ̃2
k = −80 dBm, and P = 10 dBm. Let

|hii|2 = 1, 0.95, 0.85, 0.90, 0.94 for i = 1, . . . , 5, let |h̃kk|2 =
0.50, 0.48 for k = 1, 2, and let |hji|2 = |h̃ki|2 = 0.1 for
any i ̸= j and i ̸= k. We plot the tradeoff between the sum
secure rates R1 +R2 (with eavesdropping) and the sum rates
R3 + R4 + R5 (without eavesdropping). We fix wi to be 1
for i ∈ {1, 2}, and set the rest wi’s for i ∈ {3, 4, 5} to the
same value η ranging from 0.001 to 100. We consider the
following benchmark called max power and linear search: let
p1 = p2 = ρ and let p3 = p4 = p5 = ρ′; fix either ρ or ρ′ to
the peak power and tune the other by linear search. The figure
shows that the proposed method outperforms the benchmark
significantly. For instance, if R1+R2 is fixed at 1.5 bits/s/Hz,
the FP-based method enhances R3+R4+R5 by around 13%
as compared to the benchmark method.

IV. CONCLUSION

Differing most previous studies that consider min-FP and
max-FP separately, this work proposes a unified approach to

these two types of FP. The proposed method is closely related
to MM and can be further extended to the matrix ratios. In
addition, we illustrate the use of this new FP technique in
target sensing and secure transmission.
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