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Abstract—This paper considers a typical application case of
the integrated sensing and communications (ISAC) in which the
receiver wishes to not only enhance its channel capacity but also
localize the transmitter in aid of metasurfaces (MTSs). In view
of practical situations, we assume that the MTSs consist of low-
resolution (e.g., 1-bit) phase shifters and that the channel state
information (CSI) is completely unknown. The key step in the
proposed method is to retrieve the phase difference information
from the received signal strength (RSS) through a novel technique
called blind beamforming. We then utilize the phase difference
information to align the reflected channels and thereby enhance
signal-to-noise ratio (SNR), and also recover the position of the
target with the MTSs treated as anchors. According to our field
tests carried out at 2.6 GHz frequency band, the proposed method
gives much more precise localization than the benchmarks, aside
from increasing the SNR by up to around 10 dB.

I. INTRODUCTION

Metasurface (MTS) is a planar array of meta-atoms. Each
meta-atom is programmable in the sense that it can reconfigure
the phase shift of the incident electromagnetic signal. There
are two popular applications: (i) use MTS to focus the reflect-
ing beam onto the receiver to increase its signal-to-noise ratio
(SNR) and thereby improve the quality of communications;
(1) use multiple MTSs as anchors to facilitate localization. The
central problem here is to optimize the phase shifts of MTSs,
which has been dealt with separately for communications and
localization in the literature. In contrast, this work proposes
a unified blind beamforming method to accomplish the two
purposes simultaneously.

Unlike conventional wireless communication technologies
that focus on the transmitter/receiver-side design, MTS aims
to improve the propagation environment by manipulating
reflected paths. When the channel state information (CSI) is
available, a variety of standard tools are applicable for the
optimization of phase shifts of MTS, including the semidefi-
nite relaxation (SDR) [1], [2], the minorization-maximization
(MM) [3], and the fractional programming (FP) [4], [5]. The
aforementioned CSI-based methods all rely on precise real-
time channel acquisition—which is difficult to guarantee in
practice for the following reasons: (i) each reflected channel
alone is much weaker than the direct channel plus the back-
ground noise, so the estimation error can be quite large; (ii)
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MTS typically comprises hundreds of meta-atoms, so chan-
nel estimation is computationally formidable; (iii) additional
channel estimation for MTS requires modifying the existing
network protocol. As such, this work considers the phase shift
optimization of MTS in the absence of CSI. Our approach is
most closely related to the so-called RFocus algorithm in [6],
which extracts features of the wireless environment from the
received signal strength (RSS) and optimizes the phase shifts
accordingly. The proposed method called the blind phase shift
optimizer (BPSO) differs from the RFocus algorithm in two
places. First, our method works for a wider range of MTS
models. Second, more importantly, our method accounts for
the localization task aside from the communication task.

While the conventional use of MTS is focused on wireless
communications, there has been an emerging research interest
in the MTS-assisted localization over the past few years.
The idea of treating MTS as “anchor” is proposed for both
indoor and outdoor localization cases [7], [8]. The authors of
[9] devise a so-called MetaSight system to localize a radio
frequency identification (RFID) object by using a pair of
MTSs. Its main idea is to acquire the phase information for all
the reflected channels related to the MTSs and subsequently
deduce the angle of arrival (AoA) from each MTS to the target.
Each MTS gives an angle measure, so we can decide the target
position by intersecting the two angle measures. Clearly, the
core of the above technology lies in the phase acquisition for
reflected channels. In contrast, [10] also employs two MTSs
but does not require estimating phases. The proposed method
in [10] performs beam scanning exhaustively to determine the
angles. It is worth noting that the beam scanning method has
also been considered for the MTS-assisted communications
[11], [12]. Our method BPSO is more related to the phase-
based method in [9]. Our field tests show that the proposed
method outperforms the beam scanning method significantly
in both communications and localization tasks.

II. SYSTEM MODEL

Consider a double-MTS system as shown in Fig. 1. Each
MTS acts as an anchor to determine one direction of the
target, so a pair of MTSs suffice to determine the 2D location.
Assume that each MTS consists of /N meta-atoms arranged as
an N, x N, array, where N = N, N,. The (u,v)th meta-atom
refers to the meta-atom on the uth row and the vth column,
foru=1,2,...,N; and v = 1,2,..., N,. The positions of
the two MTSs are precisely known a priori. Denote by 8y ,, .,
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Fig. 1. Localizing the transmitter by taking the two MTSs as anchors.

the phase shift of the (u,v)th meta-atom of MTS ¢ € {1,2}.
Let 8; = {0/,4,0,Vu,v} be the set of phase shift variables
for MTS /. These phase shifts are subject to practical finite-
resolution constraints, e.g., for the (log, K)-bit phase shifter
case, the choice of each 6, , is limited to a discrete set
Pg ={0,w,2w,...,(K — 1)w}, where w = 2Z.

Denote by h:, € C the direct channel from transmitter
to receiver, Ny .0 € C the channel from transmitter to the
(u, v)th meta-atom of MTS ¢, hy ., € C the channel from
the (u, v)th meta-atom of MTS / to receiver. Each of the above
channels is modeled as

5 — 1 -
hﬁ(\/1+6h+\/1+5h>’ M

where 0 < v < 1 is the attenuation factor, 6 > 0 is the Rician
factor, h € C is the line-of-sight (LOS) component satisfying
|h| = 1, and the fading component h is a random variable
drawn from the complex Gaussian distribution CA/(0, 1). Note
that the parameters (7, d, h) can vary from channel to channel,
while the random variables h are i.i.d. across the channels.
Thus, the (u,v)th meta-atom of MTS ¢ induces the following
reflected channel from transmitter to receiver:

hl,u,'u = ht,@,u,v X h@,r,u,vz le {LQ} (2)

Furthermore, the LOS channels can be computed explicitly.
Denote by (¢4, ¢re,Ver, der) the azimuth and elevation
angles associated with MTS ¢ as illustrated in Fig. 2, denote
by A. the carrier frequency, and denote by d;; the spacing
between two adjacent meta-atoms. Fig. 3 (resp. Fig. 4) shows
the path length difference between two adjacent meta-atoms
on the same row (resp. column) for the incident signal. With
the top-left meta-atom index as (1,1), we can obtain from
geometry the phases of the LOS components as

Ll = Edar (vsin(ihe ) cos(de) — usin(gy,e)) + Edee,

L, = Edar (usin(¢r,) — vsin(iy,,) cos(¢e,r)) — Ede,r,
Zﬁt,r = fdt,n 3)

where £ = —i—” and {d; s, do,,dy .} are the distances as

indicated by their subscripts.

For wireless communication, we aim to maximize the ex-
pected overall channel power by coordinating the phase shifts

Fig. 2. Azimuth and elevation angles from each MTS to transmitter/receiver.
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Fig. 3. Path distance difference
between two horizontally adja-
cent meta-atoms.

Fig. 4. Path distance difference
between two vertically adja-
cent meta-atoms.

of MTSs:
N, Ny
SNR=E htr+zzz h@uvejeéuv) ‘|7 (4)
=1 u=1v=1

where the expectation is taken over the fading components. In
the meanwhile, we wish to localize the transmitter based on
the RSS measure as the receiver, namely active sensing, by
using the two MTSs as anchors. Denote by (P, P ) € R? the
estimated position coordinates of the transmitter and denote
by (P, P,) the ground truth. Without any CSI, we can only
obtain (P,, ﬁy) from the RSS measure at the receiver side.
We seek to minimize the mean squared estimation error:

MSE = E[(P, — P)? + (P, — P,)?], ®)

where the expectation is taken over the fading components.

III. COMMUNICATION ENHANCEMENT

We start with the communication task alone. This section
extends the main result in [13] for the double-MTS system:
how to maximize the expected overall channel power in
(4) without CSI. First, we generate each 6,,, randomly
and independently, and then measure the corresponding RSS,
written as S, at the receiver; each S corresponds to a random
sample. We perform a total of T random samples. For the ¢th
random sample, let 6] = {67, ,} be the set of phase shifts of
MTS 1, let 65 = {6} ,WJ} be the set of phase shifts of MTS
2, and let S be the RSS. The T' random samples are then
grouped as follows. Let Qg ,, ,, 1 be the set of indices of those
random samples whose phase shift for the (u,v)th meta-atom
of MTS /¢ equals kw, ie, Quuwk = {t|0],, = kw}, for
k=1,..., K. We then compute the conditional sample mean
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Fig. 5. The CSM method can be interpreted as finding the optimal A ,, ,
to match supy{Je, v, (k)} with supg{Je,u,.(k)}-

of RSS within each Qg 4 1 as

~ 1
E[S [ 0puw = kw] = 10wl Z S*. (6)
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Finally, we choose each phase shift to maximize the condi-
tional sample mean of RSS:

07 ., = arg max E [S|6ru0=¢]. 7
T pEPK

As such, the above algorithm is referred to as the conditional
sample mean (CSM) algorithm, which extends the result in
[13]. Following the steps in [13], we can show that SNR N?
for T' sufficiently large (in a polynomial order).

I'V. CONNECTION TO PHASE DIFFERENCE RETRIEVAL

As a key insight provided in [13], the CSM algorithm can
boost the expected overall channel power because it can align
each reflected channel E&um = Et%u,v X Egmw, with the
direct channel Et,r as much as possible in the absence of CSI.
Actually, we can take advantage of this alignment effect to
perform the phase difference retrieval. To be more specific,
we can recover the phase difference between E&uﬂ, and Et,’r
from the output of the CSM algorithm.

First, with all the phase shifts generated randomly and inde-

pendently, we define the following function in kK =1,..., K:
Jouw(k) =E[S | p4,0 = kw] —E[S]
= PAgypcos(bw — Agy ), 8)
where B B
AZ,u,v = Aht,r - Zhé,u,v (9)

is the phase difference, A, , is a constant, and P is the
transmit power. Although Jy,, (k) depends on the CSI, we
can empirically evaluate it based on the RSS measures:

Jtuw(k) =E[S | 0p = ko] —E[9]

1 1 &
== ) SthSt. (10)
t=1
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Now we aim to minimize the distortion between J; , ,, (k)
and Jy,, (k) by tuning the phase difference A, ,, , in (8). In
particular, if we choose a square-of-max metric:

2

Braww (D) = s%p{Je,um(k)}—sgp{fz,u,v(m , (1)

then the distortion minimization problem is

minimize B, (Deuv (12a)
tnimize 0 B (D)
subject to Ay € (0,27], V(¢ u,v). (12b)

The above problem can be optimally solved in closed form
as A}, , = kj,,w with k7~ = argmaxy Jou(k), as
illustrated in Fig. 5. This solution can be thought of as an
estimate of the unknown phase difference Ay ,, ,, in (9), which
can be further recognized as the solution by the CSM method
in [13]. Indeed, we hit two birds with one stone: the random
sampling in the CSM algorithm not only yields the phase shift
solution {6y, } that guarantees SNR < N 2, but also recovers
the phase difference A, , , that plays a central role in the
MTS-based localization as discussed in the next section.

V. LOCALIZATION BASED ON PHASE DIFFERENCE

After obtaining the phase difference information {Aj , }
as shown in the previous section, we are ready to localize
the target by using the geometric relationships in (3). First, by
substituting Zhy -, Zht 00> a0d Lhy 0, into (9), we rewrite
Ay .y, as in (13). Equipped with (13), we show that the phase
difference for any two vertically adjacent meta-atoms (u,v)

and (u + 1,v) can be determined as

Af,u+1,v - Aé,u,v = ng(Sin(qbf,r) - Sin(¢t7€))~

Recall that ¢, only depends on the position of the MTS
anchor, which is available since the position of MTS is already
known. Recall also that we can recover Ay, , as A}, , by

performing the CSM method. Thus, through (14), we can
recover ¢y ¢ as

(14)

A

* _A*
Z,qulgziM Z,u,v) . (15)

There are (N, — 1) N, pairs of vertically adjacent meta-atoms
on each MTS in total. We compute ¢;, , , for each pair and

d);&u’v = arcsin (sin(mﬂa) —

then average out to get the ultimate estimate ¢y .

The above procedure can be extended for the horizontally
adjacent meta-atoms. Similarly, we show that any two hori-
zontally adjacent meta-atoms (u,v) and (u,v + 1) have their
phase difference:

A€7u,v+l - Af,u,v =

Edar (sin(ty,e) cos(dr,e) — sin(ihe,,) cos(¢r,r)).  (16)

Apu = Edyy — Edpr - v(sin(Yy,r) cos(der) — sin(tyg) cos(dr ) — Edar - u(sin(ey ) — sin(de,r)) + E(die — der). (13)



Algorithm 1 Proposed BPSO method
input: 7' random samples of (6%, 6%)
fort=1,2,...,7T do
set the MTS phase shifts as (6%, 6%)
measure the corresponding RSS S*
end for
compute E[S | 6., = kw] according to (6)

decide 0y, , and recover AZU,U according to (7)

recover elevation angle @74} and azimuth angle @7@
find the location (P, P,) by solving (18)
output: optimized {6, } and the coordinates (P, P,)

R A U o

—
=4

We then estimate 1), , based on (16) as
w:j,u,v -

* — A* .
arcsin lu,v+1 — £u,v + Sln(¢l,r)§08(¢z,r) ] (17)
&dg cos(@r ) cos(r.e)

Subsequently, we average out the above estimation across all
(N, —1)N. possible pairs of horizontally adjacent meta-atoms
on each MTS to arrive at the ultimate estimate 1%7@.

After recovering the elevation angle ¢, and the azimuth
angle 1, from MTS ¢ to the target, we can draw a ray
connecting MTS ¢ and the target. Since there are two MTSs at
distinct positions, we can locate the target at the intersection
of the two rays, as shown in Fig. 1. Specifically, denoting
by (Pg,, Py, ) and (P,, P,,) the locations of the two MTSs
(iE terms of their center points), we can obtain the estimate
(Py, Py) by solving the following system of linear equations:

y— Pyl = 71]&11(1)’/};71)(1’ - P.’L'l)?
Yy— Py2 = taﬂ(%,z)(fﬂ - sz)'

Algorithm 1 summarizes all the steps of our proposed BPSO
method for enhancing communication and localization jointly.

(18a)
(18b)

VI. FIELD TESTS

As shown in Fig. 6, we implement a double-MTS sys-
tem in an indoor classroom. As shown in Fig. 7, the MTS
prototype comprises 21 x 14 = 294 meta-atoms separated
by 6 cm. Each meta-atom provides 2 phase shift options
{0,7}. The operating frequency of the MTS prototype is
2.6 GHz. The positions of the transmitter and the receiver
are fixed at coordinates (0,0.53,0.1) and (4.51,—0.48,0.1),
respectively. The two MTSs are placed at (1.24, —1.25,1.56)
for MTS 1 and (1.24,1.35,1.56) for MTS 2. The transmitter
is equipped with an omnidirectional antenna. To compare with
traditional localization algorithms based on the antenna array,
we deploy four omnidirectional antennas at the receiver, but
for communication performance, we only consider the SNR
of a single antenna. We send the signal at a carrier frequency
of 2.6 GHz, with a bandwidth of 125 KHz.

For communication performance, we compare the proposed
BPSO with several existing benchmarks:

e Zero Phase Shifts (ZPS): Fix phase shifts to zero.

e Beam Scanning [11], [12]: Try out T random samples
and then choose the best.

o DFT: First estimate the channel by the discrete Fourier
transform (DFT)-based method in [14] and then optimize
the phase shifts of two MTSs.

e ALRA: First estimate the channel by the approximate
low-rank-approaching (ALRA) method in [15] and then
optimize the phase shifts of two MTSs.

We compare the performance of the BPSO with the above
methods in terms of the SNR boost at the receiver compared
to the system without MTS. Moreover, we compare the
localization accuracy of the proposed BPSO with the following
methods:

e MUSIC: Removing the two MTSs from the system, the
receiver executes the localization algorithm based on the
MUSIC algorithm.

e MUSIC-ZPS: The receiver performs the same localization
algorithm in MUSIC, but we deploy the two MTSs in the
system with zero phase shifts.

o DFT: Use the DFT method in [14] to first estimate Ay, ,,,
and then localize the target.

e ALRA: Replace the channel estimation algorithm in DFT
with the ALRA method [15].

The squared error (SE) of the position coordinate is used to
evaluate the localization accuracy of each algorithm. Notice
that BPSO, DFT, and ALRA all require random samples. We
let T' = 3000 by default.

We first sweep through different transmit power levels to
examine different algorithms. Specifically, the transmit power
varies from —10 dBm to 10 dBm in increments of 5 dBm.
Fig. 8 shows the SNR boost achieved by different algorithms
versus the transmit power. It can be seen that the SNR boost
achieved by all algorithms increases with transmit power.
Furthermore, it can also be seen that the proposed BPSO
consistently achieves the highest SNR boost. Fig. 9 further
shows the SE achieved by different algorithms versus the
transmit power. Observe that higher transmission power con-
sistently results in lower estimation errors for all algorithms.
Observe also that the SE of MUSIC-ZPS is considerably higher
than that of the system without MTSs due to the interference
introduced by the two MTS in angle estimation. Observe
also that the localization error by the proposed BPSO is less
sensitive to the change of SNR.

We then vary the number of random samples 7'. In par-
ticular, we increase 1" from 1000 to 3000 in increments of
500, with the transmit power level fixed at P = 0 dBm.
Fig. 10 shows the SNR boost achieved by different algorithms
versus the number of samples 7. As expected, the SNR
boosts achieved by all algorithms increase with T, except for
ZPS. Furthermore, the proposed BPSO algorithm consistently
outperforms the CSI-based methods by more than 2 dB.
Fig. 11 further shows the SE achieved by different algorithms
versus the number of samples 7. Observe that the two CSI-
based methods perform even worse than the MUSIC method,



Fig. 6. Field Test Scenario.

Fig. 7. MTS prototype.
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Fig. 9. Squared error v.s. transmit power.

indicating the poor performance of the channel estimation. In
contrast, the proposed BPSO can achieve a notably low SE
with only 7" = 1000 samples.

VII. CONCLUSION

This work proposes a blind beamforming approach to
the joint enhancement of communication and localization. It
hinges on two nontrivial observations. First, maximizing the
conditional sample mean of RSS is equivalent to aligning
reflected channels with the direct channel. Second, maximizing
the conditional sample mean of RSS is also equivalent to
the phase difference retrieval. Equipped with the above two
equivalences, we propose an efficient algorithm that enables
integrated communications and localization. Field test results
show that the proposed algorithm outperforms benchmarks for
both communication and localization tasks significantly.
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