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Abstract—Deep unfolding is a frontier machine learning tech-
nology that aims to mimic the behavior of an iterative algorithm
through deep neural networks (DNN). This paper considers using
deep unfolding to recover and even improve the fast fractional
programming (FastFP) algorithm for optimizing the transmit
beamforming vectors in massive multiple-input-multiple-output
(MIMO) networks. The FastFP algorithm is computationally
more efficient than the conventional fractional programming
(FP) method and the weighted minimum mean square error
(WMMSE) algorithm for two reasons: (i) it eliminates the large
matrix inversion; (ii) it linearizes the computation of the optimal
Lagrange multipliers for the power constraints. However, FastFP
is sensitive to the update stepsize in each iterate, yet the existing
choice of stepsize based on the matrix eigenvalues can incur
high complexity in the massive MIMO case. As such, this work
proposes tuning the stepsize via deep unfolding. In particular,
since the optimal stepsizes can vary from iterate to iterate,
deep unfolding is well suited for coordinating the stepsizes
across the different iterates. Numerical experiments show that
the proposed deep unfolding scheme is more aggressive than the
FastFP in choosing the stepsizes, and thereby yielding much faster
convergence aside from requiring much lower computational
complexity.

I. INTRODUCTION

A fundamental problem of multiple-input-multiple-output
(MIMO) system design is to optimize the transmit beam-
formers to maximize a weighted sum rates (WSR) throughout
the cellular networks, namely the WSR problem. The WSR
problem is notoriously difficult. In fact, it is shown to be NP-
hard even for the single-input-single-output case [1]. In more
recent literature, the WMMSE algorithm [2], [3] is widely
adopted for solving the WSR problem. However, the WMMSE
algorithm can incur high computational tension in the massive
MIMO case. To be more specific, each iterate of WMMSE
requires inverting a matrix whose size is proportional to the
number of transmit antennas. Another challenge faced by
the WMMSE algorithm in massive MIMO is caused by the
power constraint. Specifically, in each iteration, WMMSE
needs to determine a Lagrange multiplier for each cell to
satisfy the power constraint on the beamforming vectors. The
optimal Lagrange multiplier has no closed-form solution and
is typically addressed via bisection search [2].
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Recently, there is a surge of research interest in the data-
driven approach to the massive MIMO beamforming problem.
Differing from those pure black-box learning methods [4]–
[6] that attempt to mimic the existing optimization methods
(e.g., WMMSE) via the universal approximation of DNN,
the deep unfolding methods [7]–[9] take into account the
iterative structure of the conventional model-driven algorithms
and aims to learn the behavior of each iterate. However, two
main challenges arise when it comes to the massive MIMO
case: (i) the iterative algorithm, i.e., WMMSE or fractional
programming (FP) requires inverting large matrices, yet the
matrix inversion is much more difficult to learn than the
matrix addition and multiplication; (ii) the iterative algorithm
requires finding the optimal Lagrange multipliers for the power
constraint, which is complicated and highly nonlinear and can
increase the training cost considerably.

To overcome the above bottleneck, the deep unfolding
method proposed in this paper takes advantage of an intimate
connection between WMMSE and FP. Roughly speaking,
FP refers to a class of optimization problems which are
fractionally structured, e.g., the sum-of-ratios maximization.
It turns out that the WSR problem can be recast to a sum-of-
ratios problem, and accordingly the WMMSE algorithm boils
down to a special case of the FP algorithm [10], [11]. In
fact, the large matrix inversion and the Lagrange multiplier
optimization have been well studied in the realm of FP, e.g.,
the so-called nonhomogeneous quadratic transform [12], [13]
can address both issues. Thus, unlike the previous works [14]–
[16] that consider deep-unfolding the WMMSE algorithm
directly, this work proposes incorporating the inhomogeneous
quadratic transform into the deep unfolding paradigm. We then
show that the core of the learning task is to decide the stepsize
used in the inhomogeneous quadratic transform-based FP.

The main novelties and advantages of our proposed deep
unfolding scheme, DeepFP, are summarized as follows: 1)
large matrix inverse elimination: instead of learning the matrix
inverse as in [14], we completely eliminate the need for large
matrix inversion by employing the nonhomogeneous quadratic
transform; 2) linearized optimization of Lagrange multipliers:
the proposed DeepFP extends the linearized optimization [14],
[17] of Lagrange multipliers to multiple cells; and 3) new
learning target for deep unfolding: DeepFP learns how to
select a scalar stepsize for each cell, significantly reducing
the training cost.



II. MASSIVE MIMO BEAMFORMING PROBLEM

Consider a downlink massive multi-user multiple-input-
multiple-output (MU-MIMO) system with L cells. Within each
cell, there is a BS with Nℓ transmit antennas associated with
K users. We remark that Nℓ is a large number. The kth
user in the ℓth cell is indexed as (ℓ, k). Assume that user
(ℓ, k) has Mℓk receive antennas and that dℓk independent data
streams are intended for it. Let Vℓk ∈ CNℓ×dℓk represent the
beamforming matrix used by BS ℓ associated with the signal
sℓk ∈ Cdℓk×1 for user (ℓ, k). Use Hℓk,i ∈ CMℓk×Ni to denote
the channel from BS i to user (ℓ, k), and σ2 the background
noise power. The achievable data rate for user (ℓ, k) can be
computed as [18]

Rℓk = log |I+VH
ℓkH

H
ℓk,ℓF

−1
ℓk Hℓk,ℓVℓk|, (1)

where

Fℓk =
∑

(i,j)̸=(ℓ,k)

Hℓk,iVijV
H
ijH

H
ℓk,i + σ2IMℓk

. (2)

We seek the optimal transmit beamformers V to maximize
the weighted sum rates:

max
V

L∑
ℓ=1

K∑
k=1

wℓkRℓk (3a)

s.t.
K∑

k=1

tr(VℓkV
H
ℓk) ≤ Pℓ, ℓ = 1, 2, . . . , L, (3b)

where the nonnegative weight wℓk ≥ 0 reflects the priority of
user (ℓ, k), and the constant Pℓ is the power budget of BS ℓ.

III. MODEL-DRIVEN APPROACH

This section reviews the state-of-the-art model-based meth-
ods for solving the WSR problem (3), i.e., the FP method and
its improved version.

A. Conventional FP Method

The FP algorithm solves problem (3) by constructing a
series of surrogate functions for minorization-maximization
[19]. By using the Lagrangian dual transform [11] and the
quadratic transform [10] , objective (3a) is transformed into
fq(V,Γ,Y) as shown in (4) at the bottom of the page with

Λℓk = wℓkH
H
ℓk,ℓYℓk(Idℓk

+ Γℓk). (5)

The new objective fq(V,Γ,Y) is separately concave in
V,Γ,Y, so the FP algorithm allows iteratively optimizing
these variables as
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∑
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wijH
H
ij,ℓYij(Idij

+ Γij)Y
H
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and ηℓ ≥ 0 is a Lagrange multiplier introduced for each BS ℓ
to account for its power constraint.

B. Enhanced FP Method: FastFP [12], [13]

The main drawback with the FP algorithm is that it requires
computing the large matrix inverse in (8): recall that Lℓ is an
Nℓ × Nℓ matrix and Nℓ is a large number in the massive
MIMO setting. To eliminate the large matrix inversion, we
can incorporate the following bound into the FP method:

Lemma 1. (Nonhomogeneous Bound [19]) Suppose that two
Hermitian matrices L,K ∈ Hn×n satisfy L ⪯ K. Then for
any two matrices X,Z ∈ Cn×n, one has

tr(XHLX) ≤ tr
(
XHKX+ 2ℜ{XH(L−K)Z}

+ZH(K− L)Z
)
, (10)

where the equality holds if Z = X.

Following the above lemma, we rewrite fq(V,Γ,Y) as

fq(V,Γ,Y) =
∑
ℓ,k

tr
(
2ℜ

{
VH

ℓkΛℓk

}
−VH

ℓkLℓVℓk

)
+ C,

where C represents a constant term when (Γ,Y) are held
fixed. Treating Lℓ as L and setting K = λI, where λ =
λmax(Lℓ) is the largest eigenvalue of matrix Lℓ, a lower bound
of the objective function fq(V,Γ,Y) is derived as follows:

fn(V,Γ,Y,Z) =
∑
ℓ,k

[
ωℓk log |Idℓk

+ Γℓk| − tr(ωℓkΓℓk)

+ tr(2ℜ{VH
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H
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]
. (11)

When other variables are held fixed, each Z in (11) is
optimally determined as

Zℓk = Vℓk. (12)

Likewise, when other variables are fixed, each Vℓk is opti-
mally determined as

V⋆
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V̂ℓk if
∑K

j=1 ∥V̂ℓj∥2F ≤ Pℓ√
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Fig. 2. The architecture of our proposed DeepFP network. The modules zl(·), γl(·), yl(·), vl(·) are designed based on (12), (7), (6), and (13), respectively.
In the module vl(·), the parameter λl is provided by the DNN θl, Ll is determined by (9), and Γl is determined by (5). The DNNs in different layers of the
DeepFP network have the same structure but do not share parameters.

The updates of Γℓk and Yℓk are the same as in the FP
algorithm. We refer to this enhanced FP algorithm as the
FastFP algorithm in the rest of the paper.

Remark 1. There are two common choices for λ to ensure
that the condition Lℓ ⪯ K in lemma 1 holds. The first method
is to choose λ = λmax(Lℓ) . This method can lead to a large
gap between Lℓ and λmax(Lℓ)I when the condition number of
Lℓ is large. Alternatively, we can let λ = ∥Lℓ∥F . This method
has lower computational complexity but incurs a larger gap
between Lℓ and K. The approximation error caused by λ
slows down the convergence of the FastFP. This motivates us
to leverage deep unfolding to find a better choice of λ.

IV. DATA-DRIVEN APPROACH

This section introduces a deep unfolding method, called the
DeepFP, for learning the behavior of the FastFP algorithm.

A. Deep Unfolding for Iterative Optimization

A generic iterative algorithm can be written in the following
standard form as [14]

xt = ft(x
t−1;ϕ), (15)

where t = 1, 2, . . . denotes the iteration index, x is the opti-
mization variable, the status variable ϕ is a random variable
that characterizes the uncertainty in the optimization problem.

Deep Unfolding aims to unroll the iterative algorithm into a
multi-layer sequential process. With a set of trainable param-
eters θ, the deep unfolding method represents (15) as a DNN
layer:

xl = Fl(x
l−1; θl, ϕ), (16)

where l = 1, 2, ..., T denotes the layer index, T is the total
number of layers, Fl denotes the structure of deep unfolding
network in the lth layer, and xl−1 and xl are the input and
output of the lth layer, respectively.

B. Optimizing λℓ via DNN

By specializing the above deep unfolding framework to the
massive beamforming problem (3) and the FastFP algorithm,
we have the following correspondence:

x ≡ {Zℓk,Γℓ,k,Yℓk,Vℓk}, (17)

ϕ ≡ {Hℓk,j , wℓk, Pℓ, σ
2}. (18)

Equation (14) implies that the update of Vℓk follows a gradient
projection update, where 1

λ corresponds to the step size of
the gradient update. Thus, we treat λ as a function of two
arguments: Zℓk and 1

λℓ
(Λℓk −LℓZℓk). We then use the DNN

to learn the behavior of this function. Let θl(·) denote the lth
DNN layer in the unfolding network. The value of λ in the
lth layer is then given by

λl
ℓk = θl(Zℓk,Λℓk − LℓZℓk). (19)

As (19) indicates, we think of λl as a function of Zℓk and
Λℓk−LℓZℓk. Here is the rationale of the above setting: in the
FastFP algorithm, the beamforming matrix Vℓk is updated as
a linear combination of its value from the previous iteration
and a new direction matrix Λℓk − LℓZℓk. When the number
of iterations is small, Vℓk significantly deviates from the new
direction. Thus, λ should be large to accelerate convergence.
As the number of iterations increases, Vℓk approaches the
stationary point, and Λℓk−LℓZℓk approaches the zero vector.
In this case, λ should be small to avoid oscillations. Thus, it
leads to modeling λ as a function of Zℓk and Λℓk − LℓZℓk.

In the FastFP algorithm, λ is set to the largest eigenvalue of
Lℓ to ensure convergence. In contrast, the proposed DeepFP
network need not require λl to satisfy (10). Rather, our goal
is seek a desirable λl through the DNN, to yield a better Vℓk.
This goal can be achieved by choosing a smaller λ than that
in the FastFP. According to MM theory [19], the WSR can
be improved by optimizing its lower bound, i.e., the surrogate
function fn(V,Γ,Y,Z). A smaller λ may result in a tighter
lower bound, thereby accelerating the iterative process.

The DNN structure used in the DeepFP network consists of
one input layer, multiple hidden layers, and one output layer.



The input to the DNN is the flattened Zℓk and Λℓk − LℓZℓk.
Instead of dealing with the real and imaginary parts separately,
we directly use flattened complex matrices as the integrated
input to the DNN. To achieve this, we extend the Rectified Lin-
ear Unit (ReLU) [20] activation function to support complex-
valued data in the hidden layers. We use ℜ(·) as the activation
function in the output layer to ensure that the output of the
DNN is a real number.

C. Unfolding Layers

The full structure of the DeepFP network is depicted in
Fig.2. The variables Ll and Γl are computed based on (9)
and (5), respectively. The DNNs across different layers of the
unfolding network are based on the same structure (e.g., the
number of hidden layers, the number of neurons per layer, and
the activation functions). The module named ”Power Scale”
represents scaling beamforming vectors to satisfy the power
constraints.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We generate channel data from a 7-hexagonal-cell MIMO
system as considered in [12]. Within each cell, the BS is
located at the center, and the K downlink users are randomly
distributed. Each BS and user are equipped with Nt and Nr

antennas, respectively. The number of data streams is d ≤ Nr.
The weights of all users are set to be equal. The distance
between adjacent BSs is D = 0.8 km. The maximum transmit
power of each BS is 20 dBm, and the background noise power
is −90 dBm. The distance-dependent path loss of the downlink
is modeled as 128.1+37.6 log10 r+τ (in dB), where r denotes
the distance from the BS to the user (in kilometers). τ is a
zero-mean Gaussian random variable with an 8 dB standard
deviation to account for the shadowing effect.

We set Nt = 64, Nr = 4, K = 6, and d = 2. For
all our numerical results, the DNN consists of two hidden
layers, one input layer, and one output layer. Each hidden layer
contains 64 neurons. We first investigate the impact of batch
size and learning rate on convergence performance. During
the training process, we set the learning rate to 0.005 and the
batch size to 200. Fig. 3 illustrates the WSR performance of
DeepFP with varying numbers of layers. The results indicate
the significant performance advantage of the DeepFP network
over the FastFP algorithm. Specifically, the DeepFP network
achieves substantially superior performance compared to the
FastFP algorithm when the number of layers in the DeepFP
network matches the number of iterations in the FastFP
algorithm.

B. Single-Cell Case

We evaluate the WSR performance of the DeepFP network
under different network sizes. We begin with a single-cell MU-
MIMO system with Nt = 64, Nr = 4, K = 6, and d = 2. The
following three algorithms are selected as baseline algorithms:

1) FastFP Algorithm: The result of the FastFP is taken as
the output of the FP algorithm after 100 iterations.
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Fig. 3. The WSR performance of the DeepFP network and the FastFP
algorithm. For the FastFP algorithm, the curve represents the WSR results
after i iterations. For the DeepFP network, the curve shows the WSR results
for a trained network with i layers.

TABLE I
WEIGHTED SUM-RATE AND COMPUTATIONAL PERFORMANCE FOR

SINGLE-CELL MIMO WITH Nt = 64, Nr = 4, d = 2,K = 6.

Algorithm Weighted Sum-Rate CPU time (Sec.)
DeepFP 14.664 (98.9%) 0.053 (14.0%)
FastFP 14.826 (100.0%) 0.378 (100.0%)

FastFP (76 iterations) 14.664 (98.9%) 0.287 (76.0%)
WMMSE-SC 15.270 (103.0%) 0.563 (148.9%)

IADNN 12.540 (84.9%) 0.055 (14.5%)

2) WMMSE-SC Algorithm: The WMMSE-SC algorithm
first uses WMMSE to solve a unconstrained WSR prob-
lem, and then scales the solution to satisfy the power
constraints. This method avoids the bisection method
but retains large matrix inversion, and it has theoretical
guarantees only in the single-cell case.

3) IADNN: The Iterative Algorithm-Induced Deep Un-
folding Neural Network (IAIDNN) [14] unfolds the
WMMSE-SC algorithm for single-cell MIMO systems.
IAIDNN eliminates large matrix inversions by introduc-
ing trainable matrices that approximate matrix inversion
based on the first-order Taylor expansion.

We evaluate the WSR performance of the DeepFP network
and baseline algorithms using the same test data. The average
WSR and CPU time are computed from 10, 000 test samples,
with the results presented in Table I. We also report the results
of FastFP after 76 iterations, which achieves the same WSR
performance as the DeepFP network. The WSR performance
and runtime of each algorithm are compared to those of the
FastFP algorithm, using percentages for clarity. The results
show that the DeepFP network achieves 98.9% of the WSR
achieved by FastFP after 100 iterations, while using only
14.0% of its runtime. The FastFP algorithm requires 76 iter-
ations to achieve the same WSR performance as the DeepFP
network, resulting in nearly five times the runtime. Moreover,
our algorithm outperforms IADNN in WSR performance with



TABLE II
WEIGHTED SUM-RATE AND COMPUTATIONAL PERFORMANCE FOR

MULTI-CELL MIMO WITH Nt = 64, Nr = 4, d = 2,K = 6.

Algorithm Weighted Sum-Rate CPU time (Sec.)
DeepFP 99.474 (97.4%) 0.275 (11.7%)
FastFP 102.186 (100.0%) 2.333 (100.0%)

FastFP (56 iterations) 99.480 (97.4%) 1.306 (56.0%)

TABLE III
WEIGHTED SUM-RATE AND COMPUTATIONAL PERFORMANCE OF THE

DEEPFP NETWORK FOR MULTI-CELL MIMO WITH
Nt = 64, Nr = 4, d = 4 FOR DIFFERENT K .

K Weighted Sum-Rate CPU time (Sec.) Iterations by FastFP
6 128.796 (92.8%) 0.285 (11.2%) 23
9 157.554 (90.3%) 0.584 (12.1%) 21
15 203.895 (86.5%) 1.678 (7.6%) 19

a similar computation time.

C. Multi-Cell Case

We further validate the WSR performance of the DeepFP
network in a 7-cell multi-cell MIMO system. The settings are
Nt = 64, Nr = 4, K = 6, and d = 2. The FastFP is used as
the baseline. Table II presents the WSR performance and CPU
runtime. The results show that the proposed DeepFP network
achieves 97.4% of the WSR of FastFP while using only 11.7%
of its runtime. After 56 iterations, FastFP achieves the same
performance as the DeepFP network.

Next, we consider scenarios with more users and higher
data streams per user. We set Nt = 64, Nr = 4, d = 4, and
K = 6, 9, 15. Table III presents the average WSR performance
and CPU time. We define ”Iterations by FastFP” as the
average number of iterations FastFP requires to achieve the
same performance as the DeepFP network. The results show
that as the number of users increases, the WSR performance
improves. However, the gap between the DeepFP network and
FastFP also widens. Comparing Table III with Table II, when
Nt = 64, Nr = 4, and K = 6, the FastFP algorithm requires
more iterations than DeepFP to achieve the same performance
at d = 2, i.e., the DeepFP network achieves better acceleration
performance.

VI. CONCLUSION

This work aims at a novel deep unfolding paradigm for
optimizing the massive MIMO beamformers in cellular net-
works. The proposed DeepFP method can be distinguished
from the existing deep unfolding methods [14]–[16] for MIMO
beamforming in two respects. First, while the previous work
[17] can only reduce the complexity of large matrix inversion,
DeepFP eliminates the large matrix inversion completely.
Second, while the previous work can linearize the Lagrange
multiplier optimization only for a single cell, DeepFP extends
the linearization for a generic multi-cell network. DeepFP
acquires the above two benefits by linking the traditional
WMMSE algorithm [2], [3] with the FP tools [10], [11]
and further incorporating an inhomogeneous bound [12] into

the DNN design for deep unfolding. Extensive numerical
examples demonstrate that DeepFP reduces the computational
complexity of conventional model-driven iterative algorithms
and achieves comparable performance within less computation
time.
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