
Adaptive Beamforming for Non-Line-of-Sight
IRS-Assisted Communications without CSI

Wenyu Wang†, Wenhai Lai†, Shuyi Ren†, Liyao Xiang∗, Xin Li§, Shaobo Niu§, and Kaiming Shen†
†School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), China

∗Shanghai Jiao Tong University, China
§Huawei Technologies, China

E-mail: shenkaiming@cuhk.edu.cn

Abstract—Channel acquisition is a major bottleneck in fully
exploiting the potential of intelligent reflecting surfaces (IRSs)
to improve the wireless environment. In order to bypass such
difficulty, an alternative is to optimize IRS based on the received
signal statistics rather than channel state information (CSI),
namely blind beamforming. The two recent methods, RFocus
and conditional sample mean (CSM), fall into this category,
both of which have been shown highly effective in practice.
Nevertheless, we find a subtle drawback with the existing blind
beamforming methods that they may not work well for the non-
line-of-sight (NLoS) case for two reasons. First, many more signal
samples are needed when the direct propagation diminishes.
Second, if the direct propagation is completely blocked then the
existing blind beamforming methods cannot work whatsoever.
To address this issue, we propose an adaptive strategy for
blind beamforming, which guarantees an approximation ratio
of the global optimum. Field tests and simulations show that the
proposed blind beamforming method is much more suited for
NLoS environment than the existing ones.

I. INTRODUCTION

Intelligent reflecting surface (IRS), also known as reconfig-
urable intelligent surface (RIS), aims to improve the wireless
environment by exploiting signal reflections. One of its typical
applications is to induce cascaded reflected channels and
thereby enable non-line-of-sight (NLoS) communications. The
realization of this emerging technology entails coordinating
phase shifts across many reflective elements (RE) efficiently.
Differing from most existing methods that first estimate chan-
nels and then optimize phase shifts, this work proposes a blind
approach to the IRS beamforming problem in the absence of
channel state information (CSI).

The idea of “blind beamforming” without channel acquisi-
tion dates back to [1] in which the on-off status of each RE is
decided based on the received signal statistics in lieu of CSI.
The more recent work [2] develops the applications and theory
of blind beamforming further, showing that the optimal signal-
to-noise ratio (SNR) boost can be achieved within a constant
fraction under certain conditions. The major motivation behind
blind beamforming is that [1], [2] find it difficult to incorporate
the additional channel estimation for IRS into their prototype
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IRS-assisted communication system because of the network
protocol and the hardware issues.

Actually, this paper stems from a novel observation that
the existing blind beamforming methods in [1], [2] cannot
work well when the direct propagation from transmitter to
receiver is extremely weak, for two main reasons. First, the
random sample size required for computing the received signal
statistics grows fast as the direct channel diminishes. Second, if
the direct propagation is completely blocked, then the existing
blind beamforming methods [1], [2] cannot work whatsoever.
The main goal of this paper is to address the above issue
by devising an adaptive strategy for blind beamforming with
provable performance.

The IRS beamforming problem has been considered exten-
sively in the literature assuming perfect CSI. If phase shifts can
be chosen arbitrarily, i.e., the continuous beamforming, then
clearly it is optimal to align all the reflected channels with
the direct channel on the complex plane in order to maximize
the overall channel superposition. The problem becomes much
more difficult if phase shifts can only take on values in
a discrete set as required by practical implementations. To
cope with discrete beamforming, [3] proposes to round the
continuous solution to the closest point in the discrete set, [4]
suggests optimizing one phase shift at a time while holding
the rest phase shifts fixed, and [5] proposes an approximation
algorithm that is capable of reaching at least half of the global
optimum. In order to solve the discrete IRS beamforming
problem exactly, a line of studies [6], [7] employ the branch-
and-bound algorithm, thus incurring an exponential time com-
plexity. In contrast, a recent work [8] shows that the discrete
IRS beamforming problem can be optimally solved in linear
time for the single-IRS single-user scenario. Moreover, [9]
considers applying the self-supervised learning technique to
the discrete IRS beamforming problem with imperfect CSI,
while [10] proposes optimizing phase shifts in the long run
based on the statistical CSI.

There also has been a growing interest in optimizing phase
shifts for IRS without any channel information. Aside from the
aforementioned [1], [2] that build upon statistics, many other
attempts are empirically based. For instance, [11] treats the
blind beamforming problem as a particle swarm optimization
and thus suggests using the evolutionary algorithm, [12], [13]



consider directly mapping the received pilot signals to the
phase shift decision by means of supervised learning, and [14]
uses reinforcement learning to learn the optimal beam pattern
based on the user location.

It turns out that whether the direct channel can be neglected
is of crucial importance in many works about IRS. On the
one hand, for the conventional approaches, ignoring the direct
channel can simplify channel estimation [15], [16] and phase
shift optimization [17], [18]. In particular, it would be far more
challenging to coordinate multiple IRSs in the presence of the
direct channel [8], [19]. But on the other hand, as pointed
out in Section III-C, the performance of the existing blind
beamforming approach [1], [2] cannot be guaranteed anymore
if the direct channel is too weak. This work seeks an extension
of blind beamforming with provable performance to the NLoS
transmission case in which the direct propagation is feeble.

II. SYSTEM MODEL

Consider wireless transmission with the aid of an IRS that
comprises N REs. Each RE, indexed by n = 1, . . . , N ,
induces a cascaded reflected channel hn ∈ C from the
transmitter to the receiver. In addition, denote by h0 ∈ C the
direct channel from the transmitter to the receiver. Throughout
the paper, the channels are frequently written in an exponential
form as

hn = βne
jαn , n = 0, 1, . . . , N, (1)

where βn ≥ 0 is the magnitude and αn ∈ [0, 2π) is the phase.
Let θn ∈ [0, 2π) be the phase shift decision for RE n. In
practice, the choice of each θn is often restricted to a uniform
discrete set

ΦK = {0, ω, . . . , (K − 1)ω}, (2)

where
ω =

2π

K
(3)

for some given integer K ≥ 2. The relationship between the
transmit signal X ∈ C and the received signal Y ∈ C is

Y =

(
h0 +

N∑
n=1

hne
jθn

)
X + Z, (4)

where Z ∼ CN (0, σ2) is the additive Gaussian noise with
power σ2. If the transmit power equals P so that E[|X|2] = P ,
then the received SNR can be computed as a function of the
phase shift vector θ = (θ1, . . . , θn):

SNR(θ) =

∣∣∣∣∣h0 +

N∑
n=1

hne
jθn

∣∣∣∣∣
2

P

σ2
. (5)

We aim to maximize the SNR by optimizing θ, i.e.,

maximize
θ

SNR(θ) (6a)

subject to θn ∈ ΦK , for n = 1, . . . , N. (6b)

We wish to emphasize two assumptions made about the above
problem: (i) the channel information {h0, hn} is completely
unknown; (ii) the direct propagation is NLoS so that h0 → 0.

III. PRELIMINARY

A. CPP: A Near-Optimal Algorithm when CSI is Available

We start with a simplified version of problem (6) in which
CSI is assumed to be already precisely known. The discrete
constraint ΦK is then deemed to be the main difficulty.
Nevertheless, as K → ∞, i.e., when each θn can be arbitrarily
chosen from the interval [0, 2π), the discrete problem reduces
to the continuous, and consequently, it is optimal to align each
reflected channel with the direct channel, i.e.,

θ∞n = α0 − αn mod 2π, for n = 1, . . . , N. (7)

To tackle the finite-K case, a natural idea is to round the above
continuous solution to the closest point in the discrete set ΦK :

θCPP
n = min

φ∈ΦK

|φ− θ∞n |, (8)

namely the closest point projection (CPP) method. Denoting
the global optimum by SNR⋆, it can be shown that [2], [3]

cos2(
π

K
) · SNR⋆ ≤ SNR(θCPP) ≤ SNR⋆. (9)

Thus, SNR(θCPP) ≥ 1
2 · SNR⋆ when K ≥ 4. Furthermore,

the recent work [8] shows a fairly surprising result that the
global optimum of the finite-K problem can be reached in
linear time when CSI is available. But CPP still enjoys two
advantages in comparison. First, CPP is easier to implement
than the optimal algorithm in [8]. Second, more importantly,
CPP can be somehow performed implicitly in the absence of
CSI, as discussed in the next subsection.

B. Blind Implementation of CPP without CSI

The CSM method in [2] is based on the following intuition.
Suppose that we try out a total of T random samples of the
solution space ΦN

K , each written as θt = (θ1t, . . . , θNt) for
t = 1, . . . , T . With respect to each sample t, we measure the
corresponding received signal power

ρt =

∣∣∣∣∣
(
h0 +

N∑
n=1

hne
jθnt

)
Xt + Zt

∣∣∣∣∣
2

. (10)

To evaluate how good a particular phase shift φ ∈ ΦK is for
RE n, a simple and natural idea is to fix θn = φ and compute
the resulting conditional sample mean of received signal power
when the rest phase shifts are all randomized:

Ê[ρ|θn = φ] =
1

|Qnφ|
∑

t∈Qnφ

ρt, (11)

where Qnφ ⊆ {1, . . . , T} refers to the set of all those random
samples with θnt = φ, and |Qnφ| refers to the set cardinality.
The CSM method decides each θn according to Ê[ρ | θn = φ],
i.e.,

θCSM
n = arg max

φ∈ΦK

Ê[ρ|θn = φ]. (12)

As a major result from [2], it turns out that the above heuristic
approach is equivalent to CPP when T is sufficiently large. We
remark that the RFocus method in [1] is based on a similar



idea, but it aims to optimize the on-off status of each RE
rather than phase shift. In the sequel, we will elaborate on
this connection and also explain why CSM may not work well
when the direct channel is weak.

C. Why RFocus [1] and CSM [2] Fail the NLoS Transmission

To see why CSM may fail in the NLoS channel case, we
first need to understand how CSM is related to CPP. The
computation in (11) can be further developed into

Ê[ρ|θn = φ] = 2Pβ0βn cos(φ+ αn − α0) + P

N∑
m=0

β2
m

+ C1 + C2 + C3 + C4 + C5, (13)

where

C1 =
2P

|Qnk|

N∑
a=1

N∑
b=1,b̸=a

∑
t∈Qnk

Re{hah̄be
j(θat−θbt)}, (14)

C2 =
2P

|Qnk|

N∑
a=1

∑
t∈Qnk

Re{hah̄0e
jθat}, (15)

C3 =
2
√
P

|Qnk|
∑

t∈Qnk

Re
{
h0Z̄t

}
, (16)

C4 =
2
√
P

|Qnk|
∑

t∈Qnk

Re

{
N∑

n=1

hne
jθntZ̄t

}
, (17)

C5 =
1

|Qnk|
∑

t∈Qnk

|Zt|2, (18)

where (̄·) represents the conjugate of a complex number. By
the law of large numbers, C1 through C4 all tend to zero while
C5 tends to σ2 as T → ∞, so Ê[ρ|θn = φ] tends to

E[ρ|θn = φ] = 2Pβ0βn cos(φ+ αn − α0) + const. (19)

Thus, for T sufficiently large, the CSM method in (12) now
boils down to maximizing the first term of E[ρ|θn = φ], i.e.,
2Pβ0βn cos(φ + αn − α0). It is obvious that the optimal
φ is the closest point in ΦK to α0 − αn, namely the CPP
method. The equivalence between CSM and CPP is therefore
established as T → ∞.

From a practical standpoint, we are more interested in the
behavior of CSM when T is finite. Our ultimate goal is to
make θCSM = θCPP. Toward this end, we require the condition
Ê[ρ|θn = θCPP

n ] > Ê[ρ|θn = φ] to hold for any φ ̸= θCPP
n , for

which a sufficient condition follows [2]:∣∣∣Ê[ρ|θn = φ]− E[ρ|θn = φ]
∣∣∣ < 2β0βnϵn, (20)

where ϵn > 0 is the difference between the highest value and
the second highest value of cos(φ+αn−α0) across all possible
φ ∈ ΦK . As β0 → 0, the error probability can be bounded as

Pr
{
θCSM ̸= θCPP}

(a)

≤
N∑

n=1

Pr
{
θCSM
n ̸= θCPP

n

}

(a) 1st-time CSM (b) 2nd-time CSM

Fig. 1. Visualization of the procedure in Algorithm 1.

Algorithm 1 Adaptive Blind Beamforming Method
1: Divide reflected channels into two groups SI and SC

I .
2: Take T1 random samples of {θn} for those reflected

channels hn ∈ SC
I .

3: 1st-Time CSM: Compute Ê[ρ|θn = φ] in (11) and decide
θn for each hn ∈ SC

I according to (12).
4: Determine SII and SIII according to (22).
5: Take T2 random samples of {θn} for those reflected

channels hn ∈ SI ∪ SIII.
6: 2nd-Time CSM: Compute Ê[ρ|θn = φ] in (11) and decide

θn for each hn ∈ SI ∪ SIII according to (12).

(b)

≤
N∑

n=1

Pr
{∣∣∣Ê[ρ|θn = φ]− E[ρ|θn = φ]

∣∣∣ > 2β0βnϵn

}
(c)

≤
N∑

n=1

Var(C1 + C2 + C3 + C4 + C5)

4|Qnk|β2
0β

2
nϵ

2
n

(d)

≲
K

4Tβ2
0

N∑
n=1

Var(C1 + C4 + C5)

β2
nϵ

2
n

, (21)

where (a) follows by the union bound, (b) follows by the
sufficient condition (20), (c) follows by Chebyshev’s inequal-
ity, and (d) follows by the fact that C2, C3 → 0 as β0 → 0
and also the fact that |Qnk| ≈ T/K. Notice that neither the
Var(C1 +C4 +C5) nor ϵ2n depends on β0. As a result, given
the target error probability, the above bound suggests that the
sample size T grows quadratically if the direct propagation
diminishes. We remark that the RFocus method in [1] has
the above issue as well. Furthermore, the following example
discusses the extreme case.

Example 1: If the direct propagation is completely blocked
so that h0 = 0, then the Ê[ρ|θn = φ] in (13) reduces to the
same value P

∑N
m=0 β

2
m + σ2 for any choice φ as T → ∞,

so CSM cannot decide θn in this setting.

IV. PROPOSED ADAPTIVE CSM METHOD

Since h0 being too weak is the cause of the above issue,
a natural idea is to enhance the direct channel by adding
some reflected channels to it. Specifically, one may divide the
reflected channels into two groups, and then perform CSM for



Fig. 2. Field test with an IRS prototype that consists of 400 REs and provides 4 phase shift options {0, π/2, π, 3π/2} on each RE.

Tx Rx2m

2m 2m

IRS

Fig. 3. Layout drawing of the testbed. The transmit and receive antennas are
oriented such that the direct propagation is nullified.

one group at a time while treating the other group as a part
of the “virtual direct channel” which is much stronger than
h0 alone. But this alternating method has two shortcomings.
First, the iteration between the two groups can consume a
large number of samples. Second, the iteration may not even
converge.

We propose a more sophisticated way of creating the
virtual direct channel. First, divide the reflected channels
{h1, . . . , hN} into two groups SI and SC

I . Fixing θn for SI,
we optimize θn in SC

I by CSM, i.e., the reflected channels
in SC

I are now treated as parts of the virtual direct channel
denoted by hI. With hI being much stronger than h0, CSM
now works well. As a result, every hn ∈ SC

I would be rotated
to the closest possible position to the virtual direct channel
hI. Notice that the optimized reflected channels must lie in
the two sectors adjacent to hI, both having an angle of ω/2,
as illustrated in Fig. 1(a).

We denote by SII ⊆ SC
I the subset of optimized re-

flected channels lying in the upper sector (which is shaded
in Fig. 1(a)), and SIII ⊆ SC

I the subset of optimized reflected
channels lying in the lower sector. Moreover, we use hII to
denote the superposition of the channels in SII, and hIII the
superposition of the channels in SIII. The sequel shows that
SII and SIII can be determined by comparing Ê[ρ|θn = φ].
Consider an optimized reflected channel hne

jθn that currently
lies in SII. Notice that hne

j(θn−ω) is closer to hI than
hne

j(θn+ω) is, so Ê[ρ|θn = φ − ω] must be larger than

Ê[ρ|θn = φ + ω]. By symmetry, if hne
jθn currently lies in

SIII, we have Ê[ρ|θn = φ+ω] be larger than Ê[ρ|θn = φ−ω].
In summary, we can tell which sector each hne

jθn belongs to
by comparing its associated conditional sample means, i.e.,

Ê[ρ|θn = φ+ ω]
SII

≶
SIII

Ê[ρ|θn = φ− ω]. (22)

The first stage of the proposed method is now completed.
In the next stage, we fix θn for the reflected channels in
SII, and optimize those in SI and SIII via CSM. The whole
method is then completed. We summarize the above steps in
Algorithm 1. The computational complexity of the algorithm
is O(N(T +K)). Most importantly, the proposed method has
provable performance, as stated in the following proposition.

Proposition 1: For the phase shift solution {θA-CSM
n } of

Algorithm 1, there holds

max
a,b∈{1,...,N}

|αa + θA-CSM
a − αb − θA-CSM

b | ≤ ω, (23)

i.e., the reflected channels are clustered inside a sector with
an angle of ω, so the solution of Algorithm 1 guarantees

cos2(
π

K
) · SNR⋆ ≤ SNR(θA-CSM) ≤ SNR⋆ (24)

for the NLoS transmission case with β0 → 0.
Proof: For the 1st-time CSM in Algorithm 1, all those

reflected channels of SII are rotated to the closest possible
position to the current virtual direct channel hI, so they must
lie inside the shaded sector as shown in Fig. 1(a). Clearly, their
superposition hII must lie in the shaded sector too. For the 2nd-
time CSM, as shown in Fig. 1(b), all those reflected channels
of SI and SIII are rotated to the closest possible positions to
hII. Summarizing the above results gives (23).

V. EXPERIMENTS

A. Field Tests

The field tests are carried out at the 3.5 GHz frequency
band. The transmit power P = −10 dBm. The IRS prototype
consists of N = 400 REs and provides K = 4 phase shift
options for each RE. As shown in Fig. 2, the transmit and
receive antennas are oriented such that the direct propagation
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Fig. 4. Plots of the optimized reflected channels hnejθn by the different methods when N = 100 and K = 4.

is nullified. The topology details of our testbed are shown in
Fig. 3. Aside from the CSM method in Section III-B and the
proposed adaptive blind beamforming method in Algorithm 1,
the following benchmark methods are tested:

• Zero Phase Shifts (ZPS): Fix all phase shifts to be zero.
• Random Max Sampling (RMS): Try out T random sam-

ples θt and choose the best.
• CSM with Half of REs Fixed (CSM-Fixed): Fix half of

REs and optimize the other half by CSM.
• Alternating CSM (CSM-Alternating): Divide REs into

two groups and optimize them alternatingly by CSM. Two
iterations are used in our case.

For fairness, we use the same number T = 1000 of random
samples for all the tested methods. We evaluate the SNR boost
as compared to the baseline case without the IRS deployment.

TABLE I summarizes the SNR boost performance of the
different methods. Because the direct channel is extremely
weak, the deployment of IRS even without any phase shift
optimization can already yield a remarkable SNR boost of al-
most 20 dB, as shown in the row of ZPS. Observe that the gain
of RMS as compared to ZPS is marginal. The reason is that
there are total 4400 possible solutions of {θn}, so exploring
merely 1000 of them may not provide many advantages over
the all-zero trivial solution. Despite the NLoS setting, CSM
still significantly outperforms the above two simple methods.
Moreover, it can be seen that CSM is close to CSM-Fixed,
although the latter just optimizes half of REs. This implies that
the performance gain of CSM scales slowly with the number
of REs in the NLoS environment. The proposed method can
further double the SNR as compared to CSM. Observe also
that CSM-Alternating attains similar performance. Neverthe-
less, CSM-Alternating does not guarantee convergence and
hence it is difficult to decide when to stop iteration in practice,
whereas the proposed method does not incur such concern.

B. Simulations

We further compare the proposed adaptive blind beam-
forming method with the CSI-based approach in simulations.
Consider two benchmarks: (i) CPP with estimated CSI; (ii)
CPP with perfect CSI. The DFT method [20] is used for
channel estimation. The simulation setting follows the existing

TABLE I
SNR BOOSTS ACHIEVED BY THE DIFFERENT METHODS

Method SNR Boost (dB)
ZPS 19.955
RMS 21.671
CSM 28.954
CSM-Fixed 29.009
CSM-Alternating 31.389
Adaptive Blind Beamforming 31.892

work [13]. The transmit power is 30 dBm and the background
noise power is −70 dBm. The direct channel is modeled as
h0 = 10−(PL0)/20 · ζ0 where PL0 = 32.6 + 36.7 log10(d0) is
the pathloss between the transmitter and the receiver which
are d0 meters apart, and ζ0 is the Rayleigh fading compo-
nent drawn i.i.d. from the Gaussian distribution CN (0, 1).
The cascaded reflected channel hn is modeled as hn =
10−(PL1+PL2)/20 · ζn1ζn2, n = 1, . . . , N, where PL1 and PL2
are both based on the pathloss model PL = 30+ 22 log10(d),
with d in meters respectively denoting the transmitter-to-IRS
distance and the IRS-to-receiver distance, while the Rayleigh
fading components ζn1 and ζn2 are drawn from the Gaussian
distribution CN (0, 1) independently across n = 1, . . . , N .
The locations of the transmitter, IRS, and receiver are re-
spectively denoted by the 3-dimensional coordinate vectors
(50,−200, 20), (−2,−1, 0), and (0, 0, 0) in meters. The direct
channel is fairly weak in this setting. Moreover, we assume
N = 500 throughout the simulations.

Fig. 4 shows the optimized reflected channels {hne
jθn} by

the different methods when the sample size T = 1000. It can
be seen that the channels are more clustered together by the
proposed method as compared to CPP with estimated CSI.
The best result is achieved by CPP with perfect CSI, in which
case the channels are clustered within a sector of an angle
of π/2. Furthermore, we consider the cumulative distribution
function of SNR boosts over the random channel realizations
in Fig. 5 and Fig. 6. Fig. 5 shows the case of T = 500.
Observe that the proposed method outperforms the CPP with
estimated CSI in the low SNR boost regime, e.g., the former
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Fig. 5. Cumulative distribution of SNR boosts when T = 500.
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Fig. 6. Cumulative distribution of SNR boosts when T = 1000.

is around 3 dB higher than the latter at the 10th percentile.
When T is raised to 1000, as shown in Fig. 6, the gap between
the proposed method and the CPP with estimated CSI does
not shrink, but the advantage of the CPP with perfect CSI
becomes smaller. We remark that the CPP with estimated CSI
takes much more time than the other two methods, mainly due
to channel estimation.

VI. CONCLUSION

Blind beamforming is a promising approach to the practical
optimization of IRS for its capability to bypass channel esti-
mation. Nevertheless, as pointed out in this work, the existing
blind beamforming methods in [1], [2] may fail in the NLoS
environment. To address the above issue, we propose to fix
a portion of reflected channels and treat them as a part of
the virtual direct channel while optimizing the rest reflected
channels, namely adaptive blind beamforming. It is shown that
the proposed adaptive scheme guarantees an approximation

ratio of cos2(π/K) by requiring only a linear running time in
the number of REs. Field tests show that the proposed method
can be efficiently implemented in the real world.
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