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Abstract—This work proposes linear time strategies to opti-
mally configure the phase shifts for the reflective elements of
an intelligent reflecting surface (IRS). Specifically, we show that
the binary phase beamforming can be optimally solved in linear
time to maximize the received signal-to-noise ratio (SNR). For
the general K-ary phase beamforming, we develop a linear time
approximation algorithm that guarantees performance within
a constant fraction (1 + cos(π/K))/2 of the global optimum,
e.g., it can attain over 85% of the optimal performance for
the quadrature beamforming with K = 4. According to the
numerical results, the proposed approximation algorithm for
discrete IRS beamforming outperforms the existing algorithms
significantly in boosting the received SNR.

Index Terms—Intelligent reflecting surface (IRS), linear time
algorithm for discrete beamforming, global optimum, approxi-
mation ratio.

I. INTRODUCTION

INTELLIGENT reflecting surface (IRS) is an emerging
6G technology that uses a large array of low-cost elec-

tromagnetic “mirrors”, i.e., reflective elements, to orient the
impinging radio waves toward the intended receiver, thereby
boosting the spectral efficiency, energy efficiency, and reli-
ability of wireless transmission [1], [2]. From a practical
standpoint, the choice for the phase shift induced by each
reflective element is normally restricted to a set of discrete
values because of hardware constraints. Although IRS has
been studied extensively in the literature to date, it remains a
challenging task to optimally coordinate discrete phase shifts
across reflective elements.

This work proposes efficient strategies for discrete beam-
forming for IRS in order to maximize the received signal-
to-noise ratio (SNR) boost, the computational complexity of
which is only linear in the number of reflective elements. For
the binary phase beamforming with each phase shift confined
to the set {0, π}, we show that the global optimal solution
can be computed in linear time; for the general K-ary phase
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beamforming case with each phase shift confined to the set
{ω, 2ω, . . . ,Kω} where ω = 2π/K, we propose a linear time
approximation algorithm that guarantees an SNR boost within
a constant fraction (1 + cos(π/K))/2 of the global optimum,
e.g., it can attain over 85% of the optimal SNR boost for the
quadrature beamforming with K = 4.

Unlike the existing multi-antenna devices, IRS is a passive
device that does not perform active signal transmitting. This
passive trait of IRS has spurred considerable research interests
over the past few years in adapting the traditional methods of
active beamforming, covering a variety of system models rang-
ing from point-to-point communication [3]–[6] to downlink
cellular network [7]–[19], uplink cellular network [20], [21],
interference channel [22], and wiretap channel [23]. While the
prior studies in this area mostly assume that the phase shift
can be chosen arbitrarily for every reflective element, there is
a growing trend toward practical beamforming that restricts
the choice for phase shift to a set of discrete values [24]–
[33]. Two common objectives of IRS beamforing as adopted
in the literature are to maximize the throughput [3], [8], [10],
[11], [13], [15], [18]–[20], [23] and to minimize the power
consumption under the quality-of-service (QoS) constraints
[7], [12], [16], [17], [21], other works accounting for the
generalized degree-of-freedom (GDoF) [22], energy efficiency
[9], and outage probability [34].

Optimization is a key aspect of the IRS beamforming.
In the realm of continuous IRS beamforming, two standard
optimization tools—semidefinite relaxation (SDR) [35] and
fractional programming (FP) [36], [37]—have been brought
to the fore to address the nonvexity of the IRS beamforming
problem. For instance, [7], [12], [14], [15], [19], [20], [38]
suggest using SDR because of the quadratic programming
form of the IRS beamforming problem, while [5], [11], [13],
[17], [18], [21], [23], [23], [34] invoke FP to deal with
the fractional function of the signal-to-interference-plus-noise
ratio (SINR). Moreover, [22] develops a unified Riemannian
conjugate gradient algorithm to enable interference alignment
in an IRS-assisted system, [10], [16] cope with the nonconvex
beamforming problem via successive convex approximation,
[6] relies on the minorization-maximization (MM) to address
the hardware impairments in the IRS beamforming problem,
and [3], [19] suggest a decentralized beamforming scheme
based on alternating direction method of multipliers (ADMM).

In comparison to the above continuous beamforming algo-
rithms for IRS, the existing discrete beamforming algorithms
lag somewhat in sophistication. Few attempts have been made
for the discrete case to date. To achieve the global optimum,
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[32] uses the exhaustive search and [33] uses the branch-and-
bound algorithm, neither of which is computationally scalable.
The remaining works [24]–[30] typically relax the discrete
constraint and then round the relaxed continuous solution
to the closest point in the discrete constraint set, namely
the closest point projection algorithm. However, this heuristic
method can lead to arbitrarily bad performance as shown in
this paper. We shall give a linear time beamforming algorithm
with provable performance guarantees. The main contributions
of the paper are two-fold:

1) Binary phase beamforming: We consider maximizing
the SNR boost when each phase shift is selected from {0, π}.
Although the corresponding problem appears intractable, we
show that the global optimum can be achieved in linear time.
In addition, we show that the common heuristic of projecting
the relaxed continuous solution to the closest point in the
discrete constraint set [24]–[31] can result in arbitrarily bad
performance.

2) General K-ary phase beamforming: We then assume
that each phase shift is selected from a fixed set of K
discrete values. The proposed linear time algorithm has prov-
able performance of reaching the global optimum to within
a constant fraction 1/2 + cos(π/K)/2, thus guaranteeing a
tighter approximation ratio than the closest point projection
algorithm [24]–[31] and the SDR algorithm [7], [12], [14],
[15], [19], [20], [38].

The above results are of theoretical significance because
they shatter the common beliefs that the discrete IRS beam-
forming problem must be NP-hard and that the closest point
projection is the best strategy for coordinating phase shifts
in practice. Furthermore, it is worth mentioning that the
proposed algorithm in this work can be extended to blind
beamforming without channel estimation. This topic is pursued
in the companion paper [39] to the present.

Throughout the paper, we use the boldface lower-case letter
to denote a vector, the bold upper-case letter a matrix, and the
calligraphy upper-case letter a set. For a matrix A, AT refers
to the transpose, AH the conjugate transpose, and A−1 the
inverse. For a vector a, ‖a‖ refers to the Euclidean norm, aT

the transpose, and aH the conjugate transpose. The cardinality
of a set Q is denoted as |Q|. The set of real numbers is
denoted as R. The set of complex numbers is denoted as C.
For a complex number u ∈ C, Re{u}, Im{u}, and Arg(u)
refer to the real part, the imaginary part, and the principal
argument of u, respectively. The rest of the paper is organized
as follows. Section II describes the system model and problem
formulation. Section III discusses binary phase beamforming.
Section IV discusses K-ary phase beamforming. Section V
presents the numerical results. Section VI concludes the paper.

II. SYSTEM MODEL

Consider a pair of transmitter and receiver, along with an
IRS that facilitates the data transmission between them. The
IRS consists of N passive reflective elements. Let hn ∈ C,
n = 1, . . . , N , be the cascaded channel from the transmitter
to the receiver that is induced by the nth reflective element;
let h0 ∈ C be the superposition of all those channels from

the transmitter to the receiver that are not related to the IRS,
namely the background channel. Each channel can be rewritten
in an exponential form as

hn = βne
jαn , n = 0, . . . , N, (1)

with the magnitude βn ∈ (0, 1) and the phase αn ∈ [0, 2π).
Denote the IRS beamformer as θ = (θ1, . . . , θN ), where

each θn ∈ [0, 2π) refers to the phase shift of the nth reflective
element. The choice of each θn is restricted to the discrete set

ΦK =
{
ω, 2ω, . . . ,Kω

}
(2)

with the distance parameter

ω =
2π

K
. (3)

Let X ∈ C be the transmit signal with the mean power P ,
i.e., E[|X|2] = P . The received signal Y ∈ C is given by

Y =

(
h0 +

N∑
n=1

hne
jθn

)
X + Z, (4)

where an i.i.d. random variable Z ∼ CN (0, σ2) models the
additive thermal noise. The received SNR can be computed as

SNR =
E[|Y − Z|2]

E[|Z|2]
(5a)

=
P
∣∣∣β0e

jα0 +
∑N
n=1 βne

j(αn+θn)
∣∣∣2

σ2
. (5b)

The baseline SNR without IRS is

SNR0 =
Pβ2

0

σ2
. (6)

The SNR boost is defined as

f(θ) =
SNR

SNR0
(7a)

=
1

β2
0

∣∣∣∣∣β0e
jα0 +

N∑
n=1

βne
j(αn+θn)

∣∣∣∣∣
2

. (7b)

We seek the optimal θ to maximize the SNR boost:

maximize
θ

f(θ) (8a)

subject to θn ∈ ΦK , ∀n = 1, . . . , N. (8b)

The above problem is difficult to tackle directly because of
the discrete constraint on θ.

III. BINARY PHASE BEAMFORMING WITH K = 2

As K → ∞, the discrete beamforming problem in (8)
reduces to the continuous, in which case the SNR boost is
maximized when every hn is perfectly aligned with h0, so
the optimal relaxed solution θ∞n equals the phase difference
between h0 and hn:

θ∞n = α0 − αn. (9)

It is then tempting to believe that the problem becomes harder
when K decreases. But it turns out that the problem can be
efficiently solved when K = 2, as stated below.
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Theorem 1: The binary phase beamforming problem in (8)
with K = 2 can be optimally solved in O(N) time.

Before proceeding to the proof of the above theorem, we
first cast (8) to a quadratic programming form. By letting

x = (1, x1, . . . , xN )T with xn = ejθn , (10)

we rewrite the problem in (8) as

maximize
x

xHCx (11a)

subject to xn ∈ {ejω, . . . , ejKω}, ∀n, (11b)

where the matrix C = [Cmn](N+1)×(N+1) is given by

Cmn = hHmhn, ∀m,n = 0, . . . , N. (12)

It can be shown that rank(C) ≤ 2. We deal with the rank-one
case and the rank-two case separately in the following.

1) rank(C) = 1: In this case, each hn is a multiple of h0,
i.e., the quotient

rn =
hn
h0
∈ R. (13)

When K = 2, by substituting (13) back into (11), we obtain

maximize
x

(1 + r1x1 + . . .+ rNxN )2 (14a)

subject to xn ∈ {−1, 1}, ∀n. (14b)

It can be readily seen that the optimal x would let every term
rnxn be positive, i.e.,

x?n = sgn(rn), n = 1, . . . , N, (15)

where sgn(z) equals 1 if z ≥ 0 and equals −1 otherwise. We
then recover the optimal phase shift as θ?n = arccos(x?n). The
above method runs in O(N) time.

2) rank(C) = 2: Rewrite each hn as a vector vn ∈ R2:

vn =

[
Re{hn}
Im{hn}

]
, n = 0, . . . , N, (16)

and write
V =

[
v0, . . . ,vN

]
. (17)

With an auxiliary variable y ∈ R2, we transform the objective
function in (11) as follows:

xHCx = ‖V x‖2 (18a)

= max
‖y‖=1

‖V x‖2 · ‖y‖2 (18b)

= max
‖y‖=1

(
(V x)Ty

)2
(18c)

= max
‖y‖=1

(
vT0 y + x1v

T
1 y + . . .+ xNv

T
Ny
)2
, (18d)

where (18c) follows by the Cauchy-Schwarz inequality. In-
spection of the new objective function in (18d) shows that the
optimal choice of xn ∈ {−1, 1} given y is to let xnvTny have
the same sign as vT0 y, i.e.,

x?n = sgn(vT0 yv
T
ny), n = 1, . . . , N, (19)

so the joint optimization of (x,y) hinges on how to optimize
y.

We treat each vn, n = 0, 1, . . . , N , as a normal vector and
consider its tangent line as shown in Fig. 1. Since multiple

Im

Re

Fig. 1. The rank 2 case of binary phase beamforming with N = 2. The
normal vectors v0,v1,v2 correspond to a tangent line each. The tangent
lines, denoted as the dashed lines, partition the unit circle into 6 circular
segments.

vn’s may be associated with a common tangent line, the total
number of tangent lines M ≤ N + 1. Denote an arbitrary
tangent line as `1. Starting from `1, denote the remaining
M − 1 tangent lines as `2, . . . , `M in counterclockwise order.
Let Vm be the set of vn’s associated with `m, m = 1, . . . ,M .
As illustrated in Fig. 1, these tangent lines partition the unit
circle into a total of 2M circular segments. Choose a circular
segment that first intercepts `1 then intercepts `2 counterclock-
wise; denote it as L1. The remaining circular segments are
denoted as L2, . . . ,LM in counterclockwise order.

Notice that on each circular segment x?n in (19) is fixed, so(
vT0 y+x?1v

T
1 y+ . . .+x?Nv

T
Ny
)

is a piecewise linear function
of y. When y is restricted to a particular segment Lm, the
optimization problem of y in (18d) can be rewritten as

maximize
y∈R2, ‖y‖=1

wT
my (20)

with the coefficient vector

wm =

N∑
n=0

sgn(vTny
′)vn, (21)

where y′ ∈ R2 is an arbitrary vector located in the interior
of Lm. A naive idea is to compute every wm by using (21),
requiring O(N) time; this would result in O(N2) time in total
for all m = 1, . . . ,M . But we show that the time can be
reduced to O(N) via iterative updating. When updating x?n
from one circular segment Lm to the next circular segment
Lm+1, we just need to change the values of those x?n variables
related to the tangent line `m+1 that separates the two circular
segments, i.e., {x?n : ∀n ∈ Vm+1}, so wm+1 can be computed
iteratively based on wm as

wm+1 = wm −
∑

n∈Vm+1

2 · sgn(vTny
′)vn, (22)

with an arbitrary y′ ∈ R2 located in the interior of Lm. Thus,
while w1 is still computed as in (21) in O(N) time, the other
coefficient vectors w2, . . . ,wM can be obtained sequentially
according to (22) in O

(∑M
m=2 |Vm|

)
= O(N) time in total.

Moreover, the optimal y in problem (20) for each m can
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Fig. 2. The four sectors S1 to S4. In the proof of Theorem 2, we first rotate
µ1 clockwise by an angle of ω/2, then combine it with µ3 to obtain µ13.

be obtained in O(1) time as

y?m = arg min
y∈R2, ‖y‖=1

∥∥∥∥y − wm
‖wm‖

∥∥∥∥ , m = 1, . . . ,M, (23)

i.e., y?m = wm/‖wm‖ if wm/‖wm‖ ∈ Lm; otherwise y?m is
located at one of the endpoints of the circular segment Lm.
As a result, it requires O(N) time overall to solve a sequence
of problems in (20) for m = 1, . . . ,M .

Finally, the actual optimal y? is given by

y? = max{y?1 , . . . ,y?M}. (24)

We then compute the corresponding x?n as in (19) and recover
the optimal phase shift by θ?n = arccos(x?n). The entire proce-
dure requires O(N) time in total. The proof of Theorem 1 is
then completed. We summarize the above steps in Algorithm
1.

We remark that the binary phase beamforming case is fairly
special in that the variable xn in (10), either −1 or 1, is real-
valued. When K > 2, xn is complex-valued in general and
thus the above linear time algorithm no longer applies.

In the existing literature [24]–[30], a common way of dis-
crete beamforming is to round the relaxed continuous solution
θ∞n in (9) to the closest point in the discrete set ΦK , i.e.,

θCPP
n = arg min

θn∈ΦK

∣∣θn − θ∞n ∣∣, (25)

referred to as the Closest Point Projection (CPP) algorithm.
The following example however shows that the above algo-
rithm can result in arbitrarily bad performance when K = 2.

Example 1: Consider the binary phase beamforming with
K = 2. Assume that all the reflected channels have equal
magnitudes, and that half of the reflected channels have the
phase αn = α0− ε+ π/2 while the other half have the phase
αn = α0 + ε − π/2. As ε → 0, the closest point projection
algorithm leads to f(θCPP)→ 1, i.e., IRS does not bring any
improvements.

IV. GENERAL K-ARY PHASE BEAMFORMING

This section considers the general K-ary phase beamform-
ing in (8). We begin with a sectorization scheme in order to
reduce the search space of the optimal beamformer. This new

Algorithm 1 Proposed Binary Phase Beamforming Method
1: input: h0,h1, . . . ,hN
2: for n = 0, 1, . . . , N do
3: let vn =

[
Re{hn},Re{hn}

]T
4: treat vn as the normal vector and draw its tangent line
5: end for
6: obtain M ≤ N distinct tangent lines `1, . . . , `M ; let Vm

be the set of vn’s associated with `m, m = 0, 1, . . . ,M
7: the unit circle is partitioned into M circular segments
L1, . . . ,LM as shown in Fig. 1

8: compute w1 as in (21)
9: compute y?1 as in (23)

10: for m = 2, . . . ,M do
11: compute wm as in (22)
12: compute y?m as in (23)
13: end for
14: y? = max{y?1 , . . . ,y?M}
15: for n = 1, . . . , N do
16: x?n = sgn(vT0 y

?vTny
?)

17: θ?n = arccos(x?n)
18: end for
19: output: θ? = (θ?1 , . . . , θ

?
N )

idea then yields a linear time approximation algorithm that
guarantees performance within a constant fraction of the global
optimum. It is further shown that the proposed algorithm has
a tighter approximation ratio than the existing algorithms.

A. Optimal K-Ary Phase Beamforming

The following sectorization scheme is the building block
of our approach to the K-ary phase beamforming. Consider
four sectors around h0 on the complex plane as illustrated in
Fig. 2:

Si =

{
u ∈ C : α0+

(2− i)ω
2

≤ Arg(u) ≤ α0+
(3− i)ω

2

}
,

∀i = 1, 2, 3, 4. (26)

The overall channel superposition under the optimal beam-
former θ? is denoted as

g? = h0 +

N∑
n=1

hne
jθ?n . (27)

We remark that θ? must satisfy∣∣∣∣∣Arg(h0)−Arg

(
N∑
n=1

hne
jθ?n

)∣∣∣∣∣ ≤ ω

2
; (28)

otherwise we could find an integer k such that∣∣∣∣∣Arg(h0)−Arg

(
N∑
n=1

hne
j(θ?n+kω)

)∣∣∣∣∣ ≤ ω

2
, (29)

and thus further increase the SNR boost. The bound in (28)
implies that g? ∈ (S2 ∪ S3), so the possible values of θ? are
limited, as stated in the following proposition.

Proposition 1: For the K-ary phase beamforming problem
in (8), the optimal solution θ? is contained in either G(S1 ∪
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Algorithm 2 Proposed K-Ary Phase Beamforming Method
1: input: h0,h1, . . . ,hN
2: D′ = ∅
3: compute the sectors S1,S2,S3,S4 as in (26)
4: for i = 1, 2, 3 do
5: find θ that lets every hnejθn ∈ Si ∪ Si+1

6: D′ → D′ ∪ {θ}
7: end for
8: θAPX = arg maxθ∈D′ f(θ)
9: output: θAPX

S2 ∪S3) or G(S2 ∪S3 ∪S4), where the function G(·) is given
by

G(X ) =
{
θ ∈ ΦNK

∣∣hnejθn ∈ X , ∀n = 1, . . . , N
}

(30)

with the subset X ⊆ C.
Proof: If g? is already known, then it is optimal to rotate

every hn to the closest possible position to g?. As a result,
every hne

jθ?n must be in S1 ∪ S2 ∪ S3 if g? ∈ S2, and in
S2 ∪ S3 ∪ S4 if g? ∈ S3.

In light of the above proposition, it suffices to search for
θ? in G(S1 ∪ S2 ∪ S3) ∪ G(S2 ∪ S3 ∪ S4), i.e.,

θ? = arg max
θ∈D

f(θ), (31)

where

D = G(S1 ∪ S2 ∪ S3) ∪ G(S2 ∪ S3 ∪ S4). (32)

Note that the search space size |D| = 2N is much smaller than
the full solution space size |ΦNK | = KN for large K. But the
running time is still exponential. We aim at a more efficient
algorithm in the next subsection.

B. Proposed Approximation Algorithm
The premise behind the algorithm in (31) and (32) is that the

optimally phase-shifted channels {h1e
jθ?1 , . . . , hNe

jθ?N } can
spread up to three consecutive sectors, i.e., S1 ∪ S2 ∪ S3 or
S2∪S3∪S4. It guarantees the global optimality but results in
the search space D in (32) being exponentially large.

To achieve a trade-off between complexity and per-
formance, we propose letting the phase-shifted channels
{h1e

jθ1 , . . . , hNe
jθN } spread at most two consecutive sectors,

i.e., S1 ∪ S2 or S2 ∪ S3 or S3 ∪ S4. We now decide the IRS
beamformer as

θAPX = arg max
θ∈D′

f(θ) (33)

with a new search space

D′ = G(S1 ∪ S2) ∪ G(S2 ∪ S3) ∪ G(S3 ∪ S4). (34)

Algorithm 2 summarizes the details.
Notice that |D′| ≤ 3, so the search in (33) requires O(1)

time. Moreover, the new search space D′ can be obtained
in O(N) time. Thus, the total running time is O(N). Most
importantly, the resulting SNR boost f(θAPX) is within a
constant fraction of the highest possible boost.

Theorem 2: For the K-ary phase beamforming problem in
(8), the IRS beamformer θAPX in (33) by the approximation

algorithm and the optimal IRS beamformer θ? satisfy

1 + cos(π/K)

2
f(θ?) ≤ f(θAPX) ≤ f(θ?). (35)

Proof: Without loss of generality, assume that the optimal
channel superposition g? in (27) is located in S2. We partition
g? into three components:

g? = µ1 + µ2 + µ3, (36)

where µi ∈ C represents the superposition of those channels
in {h0, h1e

jθ?1 , . . . , hNe
jθ?N } that are located in Si. Defining

an auxiliary variable (see Fig. 2 for illustration)

µ13 = µ1e
−jω + µ3, (37)

we can bound the value of f(θ?) from above as

f(θ?) =
1

β2
0

∣∣µ1 + µ2 + µ3

∣∣2
≤ 1

β2
0

(∣∣µ1 + µ3

∣∣+
∣∣µ2

∣∣)2
≤ 1

β2
0

(∣∣µ13

∣∣+
∣∣µ2

∣∣)2, (38)

where the last inequality follows since the rotation e−jω of µ1

in (37) reduces the angle between µ1 and µ3.
Because θAPX is located in either G(S1∪S2) or G(S2∪S3)

when g? ∈ S2, we can lower bound the value of f(θAPX) as

f(θAPX)

=
1

β2
0

·max
{∣∣µ1e

−jω + µ2 + µ3

∣∣2, ∣∣µ1 + µ2 + µ3e
jω
∣∣2}

=
1

β2
0

·max
{∣∣µ13 + µ2

∣∣2, ∣∣µ13e
jω + µ2

∣∣2}
≥ 1

β2
0

· min
|µ′

2|=|µ2|
max

{∣∣µ13 + µ′2
∣∣2, ∣∣µ13e

jω + µ′2
∣∣2}

=
1

β2
0

·
(
|µ2|2 + |µ13|2 + 2

∣∣µ2µ13

∣∣ cos(ω/2)
)
, (39)

where the last equality follows by fact that µ′2 =
(|µ2|/|µ13|)µ13e

jω/2 is the solution to the above min-max
problem. With λ = |µ13|/|µ2|, we establish the following
upper bound by combining (38) and (39):

f(θ?)

f(θAPX)
≤ (λ+ 1)2

λ2 + 1 + 2λ cos(ω/2)

(∗)
≤ 2

1 + cos(ω/2)
, (40)

with equality in (∗) if and only if λ = 1. Finally, plugging
ω = 2π/K in (40) completes the proof.

Remark 1: The proposed algorithm can be extended to blind
beamforming without any channel information as discussed in
[39]. The work in [39] further proves that a polynomial number
of random samples suffice to guarantee the optimal quadratic
SNR boost.

C. Other K-Ary Phase Beamforming Algorithms

The proposed approximation algorithm is now compared
with the existing methods for the K-ary phase beamforming.
We begin with the closest point projection algorithm.

Proposition 2: For the K-ary phase beamforming problem
in (8), the IRS beamformer θCPP in (25) by the closest point
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Fig. 3. The worst-case scenario of the closest point projection algorithm. If
µ1 = 0 and |µ2| = |µ3| > 0, then f(θCPP) = (4/β2

0)|µ2|2 cos2(π/K) and
f(θ?) = (4/β2

0)|µ2|2 as γ = β0 = 0, so f(θCPP) = cos2(π/K)f(θ?).

projection algorithm and the optimal beamformer θ? satisfy

cos2(π/K)f(θ?) ≤ f(θCPP) ≤ f(θ?). (41)

Proof: Clearly, we can upper bound the optimal SNR
boost as f(θ?) ≤ (1/β2

0)
(∑N

n=0 βn
)2

by assuming that all
the channels can be aligned exactly. We also have

f(θCPP) =
1

β2
0

·

∣∣∣∣∣β0e
jα0 +

N∑
n=1

βne
j(θCPP

n +αn)

∣∣∣∣∣
2

(42a)

=
1

β2
0

·

∣∣∣∣∣β0 +

N∑
n=1

βne
j(θCPP

n −θ
∞
n )

∣∣∣∣∣
2

(42b)

≥ 1

β2
0

·

∣∣∣∣∣β0 +

N∑
n=1

βn cos
(
θCPP
n − θ∞n

)∣∣∣∣∣
2

(42c)

≥ 1

β2
0

·

∣∣∣∣∣β0 +

N∑
n=1

βn cos
ω

2

∣∣∣∣∣
2

(42d)

≥ cos2(ω/2)
1

β2
0

·

∣∣∣∣∣
N∑
n=0

βn

∣∣∣∣∣
2

(42e)

≥ cos2(ω/2)f(θ?), (42f)

where (42d) follows since |θCPP
n − θ∞n | ≤ ω/2 by the closest

point projection. The proof is then completed.

Furthermore, we remark that the lower bound in (41) can
be tight as shown in Fig. 3.

While the previous works [7], [12], [14], [15], [19], [20],
[38] have used SDR for continuous beamforming, we show
that SDR works for discrete beamforming as well. Toward this
end, we first rewrite the problem as a complex K-ary quadratic
problem in (11), and then the standard SDR method applies.
The next proposition is a direct result from the existing studies
on SDR [35], [40].

Proposition 3: The K-ary phase beamforming problem in
(8) can be rewritten as a complex K-ary quadratic problem
in (11); the new problem can be approximately solved by the
standard SDR method [35], [40]. The resulting IRS beam-
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Fig. 4. Algorithm 2 (APX) vs. closest point projection (CPP) algorithm vs.
semidefine relaxation (SDR) algorithm in terms of the approximation ratio.
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Fig. 5. The cumulative distribution of the SNR boost when K = 2.

former θSDR and the optimal IRS beamformer θ? satisfy

(K sin(π/K))2

4π
f(θ?) ≤ f(θSDR) ≤ f(θ?). (43)

We conclude this section by comparing the approximation
ratios of the various algorithms in Fig. 4. It shows that
the guaranteed performance of the proposed approximation
algorithm is much closer to the global optimum.

V. SIMULATION RESULTS

In this section we validate the performance of the proposed
algorithms in simulations. The channel model follows the
previous works [7], [29], [41]. The background channel h0

is given by
h0 = 10−PL0/20 · ζ0, (44)
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Fig. 6. The cumulative distribution of the SNR boost when K = 4.
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Fig. 7. The number of reflective elements N vs. the 1st percentile SNR boost.

where the transmitter-to-receiver pathloss PL0 (in dB) is
computed as PL0 = 32.6 + 36.7 log10(d0), with d0 in meters
denoting the distance between the transmitter and the receiver,
while the Rayleigh fading component ζ0 is drawn from the
Gaussian distribution CN (0, 1). The reflected channel hn is
given by

hn = 10−(PL1+PL2)/20 · ζn, n = 1, . . . , N, (45)

where PL1 and PL2 are both based on the pathloss model
PL0 = 30 + 22 log10(d), with d in meters respectively de-
noting the transmitter-to-IRS distance and the IRS-to-receiver
distance, while the Rayleigh fading component ζn is drawn
from the Gaussian distribution CN (0, 1) independently across
n = 1, . . . , N . We use the following parameters unless other-
wise stated. The transmit power level P equals 30 dBm. The
background noise power level σ2 equals −90 dBm. The loca-
tions of the transmitter, IRS, and receiver are denoted by the
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Fig. 8. The background-to-reflection ratio β0/βn vs. the average SNR boost.
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Fig. 9. The channel ratio β0/βn vs. the 1st percentile SNR boost.

3-dimensional coordinate vectors (50,−200, 20), (−2,−1, 0),
and (0, 0, 0) in meters, respectively. The number of reflective
elements N equals 200. The channels are estimated via an
ON-OFF strategy in [42].

Fig. 5 shows the cumulative distribution of the SNR boost
for the binary phase beamforming case with K = 2. When
N = 100, it can be seen that the proposed approximation
algorithm “APX” outperforms the closest point projection
algorithm “CPP”, especially in the low SNR boost regime.
For instance, the 5th percentile SNR boost by APX is more
than 2 dB higher than that by CPP. This performance gap
remains when the number of reflective elements raises to 200.
Moreover, we consider the quadrature beamforming case with
K = 4 in Fig. 6. Observe that APX and CPP now have similar
performance. Thus, APX is more suited for the binary phase
beamforming for IRS.

We further look into the low SNR boost regime by com-
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Fig. 10. The cumulative distributions of the SNR boost under the different
noise powers when K = 2.

paring the 1st percentile SNR boosts (i.e., the 1% lowest
SNR boost across the random channel realizations) in Fig. 7.
Different values of N are considered here. The figure shows
that APX outperforms CPP significantly in the low SNR
boost regime when K = 2. For instance, when N = 200,
APX improves upon CPP by about 5 dB. Observe that the
gap between APX and CPP decreases with N . When K is
increased to 4, the advantage of APX over CPP becomes
marginal.

Fig. 8 shows how the reflected channel strength impacts the
SNR boost. We put the IRS sequentially at the following 6 po-
sitions: (−1,−1, 0), (−2,−1, 0), (−2.5,−1, 0), (−3,−1, 0),
(−3.5,−1, 0), (−4,−1, 0), so the reflected channel magnitude
βn varies among these IRS locations, while the background
channel magnitude β0 is fixed. We evaluate the channel ratio
β0/βn for each IRS location. As shown in Fig. 8, the gap
between APX and CPP in terms of the average SNR boost
increases with β0/βn, in both the binary phase beamforming
case and the quadrature beamforming case. Furthermore, Fig. 9
shows the low SNR boost performance with respect to the
different values of β0/βn. The figure also suggests that the
gap between APX and CPP becomes larger when β0/βn is
increased. Summarizing the above observations, we conclude
that APX is more suited for the scenario where the reflected
channels are relatively weak in comparison to the background
channel.

The noise power σ2 is fixed at −90 dBm in all the above
simulations. We now raise σ2 to −50 dBm and plot the
resulting cumulative distributions of SNR boosts in Fig. 10.
Due to more severe noise, the channel estimation becomes less
accurate, and thus can spoil the IRS beamforming algorithms.
Observe from Fig. 10 that APX is less affected by the
increased noise as compared to CPP. Actually, APX is far
superior to CPP when σ2 = −50 dBm, whereas the two
algorithms are close when σ2 = −90 dBm. The tolerance
to channel estimation error enables APX to perform much

better than CPP in the presence of strong interference and
background noise.

VI. CONCLUSION

Despite the practical discrete phase value constraints for
the IRS beamforming, this work shows that the optimal SNR
boost can be reached by the proposed algorithm with a linear
time complexity in the number of reflective elements, if the
phase value is binary. For the general K-ary phase beam-
forming, we propose a linear time algorithm with a provable
approximation accuracy, whereas the existing closest point
projection algorithm can result in arbitrarily bad performance.
Simulation results demonstrate the superior performance of the
proposed approximation algorithm over the existing closest
point projection algorithm in enhancing the received SNR,
especially when channel estimation is error-prone because of
interference and noise.
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