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Abstract

The Normalized cut (NCut) problem is a fundamental and yet notoriously difficult
one in the unsupervised clustering field. Because the NCut problem is fractionally
structured, the fractional programming (FP) based approach has worked its way
into a new frontier. However, the conventional FP techniques are insufficient:
the classic Dinkelbach’s transform can only deal with a single ratio and hence is
limited to the two-class clustering, while the state-of-the-art quadratic transform
accounts for multiple ratios but fails to convert the NCut problem to a tractable
form. This work advocates a novel extension of the quadratic transform to the
multidimensional ratio case, thereby recasting the fractional 0-1 NCut problem into
a bipartite matching problem—which can be readily solved in an iterative manner.
Furthermore, we explore the connection between the proposed multidimensional
FP method and the minorization-maximization theory to verify the convergence.

1 Introduction

Fractional programming (FP) is a powerful optimization tool for solving diverse problems involving
ratio terms, e.g., in the areas of physics, economics, management science, signal processing, computer
science, and information theory [1, 2, 3]. This paper explores a novel application of FP to the normal-
ized cut (NCut)—which is a fundamental and yet notoriously difficult problem for unsupervised data
clustering [4]. A new FP technique called the multidimensional quadratic transform [5] forms the
building block of this work. Differing from the classic Dinkelbach’s transform [6] that is typically
limited to the single-ratio problem with a pair of scalar-valued numerator and denominator, the
multidimensional quadratic transform is capable of handling multiple ratios simultaneously in the
same problem, and further accounts for the multidimensional-ratio case wherein the numerators and
denominators take a matrix/vector form. It turns out that the NCut problem solving can be made
much easier from a multidimensional FP point of view. Two main results have been achieved under
the umbrella of FP. First, we show that one most recent advance [7] in the NCut field can be inter-
preted as a special scalar-ratio version of the multidimensional quadratic transform, which already
outperforms the classic methods significantly. Second, by fully exploiting the multidimensional
quadratic transform [5], we develop a superior FP-based algorithm tailored to the NCut problem.

Clustering has been considered extensively in the literature from a variety of perspectives, e.g., K-
means [8], hierarchical clustering [9], spectral clustering (SC) [10], graph cuts [11], and high-density
clustering [12]. The graph cuts approach is of particular interest for its flexibility to cope with a
wide range of cluster types, e.g., not requiring the desired clusters to be center-based as many other
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geometry-based clustering algorithms do [13]. With each data point mapped to a vertex in a weighted
undirected graph, there are different ways to measure the relative strength of similarities between
subgraphs (each corresponding to a cluster), which in turn lead to different classes of graph cuts
algorithms, e.g., min cut [14], ratio cut [15], and min-max cut [16] aside from the NCut. Like many
modern works in the realm of graph cuts, our study focuses on the NCut metric because it yields
stable performance and prevents cluster imbalance [4].

Nevertheless, the optimization criterion of the NCut is numerically difficult to tackle. To be more
specific, the NCut entails solving an NP-complete problem [4]. The SC method constitutes a popular
heuristic approach to the NCut problem [4, 10], but it cannot provide any performance guarantee.
Other works aim at the analytical aspect and rely heavily on the optimization theory. For example, the
Fast Coordinate Descent (FCD) algorithm proposed in [17] evolves from the standard optimization
tool of block coordinate descent. By contrast, the Direct Normalized Cut (DNC) algorithm in [18]
is somewhat less straightforward. The main idea of [18] is to approximate the NCut problem by
using a lower bound on the original optimization objective, but it incurs a costly inner iteration in
computing such a lower bound. To remedy this, the Fast Iterative Normalized Cut (FINC) in [7]
approximates the NCut problem based on a closed-form lower bound. However, the resulting new
problem is still difficult to solve directly, which can only be addressed in a heuristic fashion as shown
in [7]. The present work is most closely related to DNC [18] and FINC [7] in the sense that it seeks
to approximate the NCut problem via bounding as well. As compared to the above existing bounds,
the new bound proposed in this work can be constructed immediately, and can further enable efficient
solving of the new problem for the clustering purpose.

2 NCut problem statement

Suppose there are N data points in total. Use i, j ∈ {1, 2, . . . , N} to index these data points. For a
pair of data points i and j, the similarity between them is quantified as 0 ≤ wij ≤ 1. By symmetry,
we have wij = wji. In the graph theory context, with each data point visualized as a vertex, the edge
between vertex i and vertex j is assigned the weight wij (or wji). Denote by V the set of vertices,
and E the set of edges. The resulting graph G = (V, E) can be recognized as a weighted undirected
graph. For each vertex i, its degree di is the sum weights across all the incident edges:

di =

N∑
j=1

wij . (1)

Dividing the N data points into K > 1 clusters is equivalent to partitioning V into K disjoint subsets
{V1,V2, . . . ,VK}, where

⋃K
k=1 Vk = V and Vk ∩ Vk′ = ∅ for any k ̸= k′. For any two disjoint

subsets A,B ⊆ V , we define

Φ(A,B) =
∑
i∈A

∑
j∈B

wij , (2)

which is illustrated in Figure 1.

Figure 1: Graph cut between two disjoint subsets A and B.

Moreover, for any subset A ⊆ V , we define its volume to be

vol(A) =
∑
i∈A

di. (3)
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In principle, data clustering aims to group together those data points that are sufficiently similar to
each other. Equivalently, we wish to minimize the similarity between any two clusters. Toward this
end, one traditional strategy is to minimize

cut(V1,V2, . . . ,VK) =
1

2

K∑
k=1

Φ(Vk, V̄k), (4)

where V̄k is the complement of Vk, i.e., V̄k = V\Vk. However, minimizing cut(V1,V2, . . . ,VK)
alone can be problematic—it tends to put most data points in one particular cluster while leaving
other clusters almost empty, namely the cluster imbalance [19]. To resolve this issue, a natural idea is
to regularize the cluster volume by considering the normalized cut:

ncut(V1,V2, . . . ,VK) =
1

2

K∑
k=1

Φ(Vk, V̄k)

vol(Vk)
. (5)

Intuitively speaking, the value of Φ(Vk, V̄k) would soar if very few data points have been assigned to
cluster k, thereby discouraging the cluster imbalance.

We are now ready to formalize the NCut problem. The indicator variable xik ∈ {0, 1} equals 1 if
data point i is assigned to cluster k, and equals 0 otherwise. Moreover, write W = [wij ] ∈ RN×N ,
D = diag[d1, d2, . . . , dN ] ∈ RN×N , and X = [xik] ∈ {0, 1}N×K . Denote by xk ∈ {0, 1}N the
kth column of X . It can be shown that

ncut(V1,V2, . . . ,VK) =
1

2

K∑
k=1

x⊤
k Lxk

x⊤
k Dxk

, (6)

where the graph Laplacian matrix L is given by L = D − W . We seek the optimal clustering
decision X that minimizes ncut(V1,V2, . . . ,VK). Further, because ncut(V1,V2, . . . ,VK) = 1

2K −
1
2

∑K
k=1

x⊤
k Wxk

x⊤
k Dxk

, the NCut minimization problem boils down to

maximize
X

K∑
k=1

x⊤
k Wxk

x⊤
k Dxk

(7a)

subject to
K∑

k=1

xik = 1, i = 1, . . . , n (7b)

xik ∈ {0, 1}, i = 1 . . . , n, k = 1, . . . .K, (7c)

where the two constraints (7b) and (7c) state that each data point must be assigned to one unique
cluster. The difficulties of the above problem can be recognized with two respects. First, the clustering
variables {xik} are discrete. Second, even when every xik is relaxed to be a continuous variable on
the interval [0, 1], the problem is still nonconvex.

3 Fractional programming

The NCut problem in (7) is fractionally structured. To be more specific, (7) takes a sum-of-ratios form.
This quick observation strongly suggests that the NCut is amenable to FP, but it turns out that very
few previous works in the literature have adopted the FP approach. In the rest of this section, we first
review the conventional FP methods to show why they are rarely considered for the NCut, and then
introduce a recently proposed FP technique called the multidimensional quadratic transform—which
forms the building block of our proposed clustering algorithm as introduced in Section 4.

3.1 Conventional FP methods

The early studies in the FP field are restricted to the single-ratio problem:

maximize
x∈X

A(x)

B(x)
, (8)
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where A(x) ≥ 0 is a nonnegative function, B(x) > 0 is a strictly positive function, and X is a
nonempty constraint set on x. In the literature, many works further assume that A(x) is concave in
x, B(x) is convex in x, and X is a convex set, namely the concave-convex condition. Notice that
problem (8) is still nonconvex in general under the concave-convex condition, so the direct solving of
(8) is difficult. The classic Dinkelbach’s transform in essence aims to decouple the ratio:

Proposition 1 (Dinkelbach’s transform [6]) The single-ratio problem (8) is equivalent to

maximize
x∈X

A(x)− yB(x), (9)

where the auxiliary variable y is iteratively updated as y = A(x)/B(x).

Observe that the new problem (9) is convex in x for fixed y under the concave-convex condition, and
hence can be efficiently solved by the standard optimization method. Importantly, solving for x in (9)
with y iteratively updated guarantees convergence to the global optimum of the original problem (8).
However, it is difficult to extend Dinkelbach’s transform to the multi-ratio problems (except for the
max-min-ratios case [20]). As such, the use of Dinkelbach’s transform in the NCut area is limited to
the two-class clustering that only needs to optimize a single ratio [21].

We now consider K > 1 pairs of the numerator function Ak(x) ≥ 0 and denominator function
Bk(x) > 0 along with a nonempty constraint set X . A sum-of-ratios problem is then formulated as

maximzie
x∈X

K∑
k=1

Ak(x)

Bk(x)
. (10)

It is tempting to decouple each ratio Ak(x)/Bk(x) by using Dinkelbach’s transform separately, but
the resulting new problem is not equivalent to problem (10). Consequently, the classic Dinkelbach’s
transform does not work for the NCut with general K clusters. A valid method to decouple multiple
ratios is presented in the following proposition.

Proposition 2 (Quadratic transform [5]) The sum-of-ratios problem (10) is equivalent to

maximzie
x∈X , yk∈R

K∑
k=1

2yk
√
Ak(x)− y2kBk(x), (11)

in the sense that x⋆ is a solution to (10) if and only if (x⋆, y⋆) is a solution to (11), where an auxiliary
variable yk is introduced for each ratio term Ak(x)/Bk(x).

We propose optimizing x and {yk} iteratively. When x is held fixed, each yk can be optimally
determined as

y⋆k =

√
Ak(x)

Bk(x)
. (12)

Furthermore, under a generalized concave-convex condition [5] wherein each Ak(x) is a concave
function, each Bk(x) is a convex function, and X is a convex set, it can be shown that the new
problem (11) is convex in x when {yk} are held fixed. Thus, the alternating optimization between x
and {yk} can be performed efficiently.

Now let us return to the NCut problem in (7) and apply the above FP technique to it. Treating
x⊤
k Wxk and x⊤

k Dxk respectively as numerator and denominator, we can recast problem (7) into

maximize
X, yk∈R

K∑
k=1

(
2yk

√
x⊤
k Wxk − y2kx

⊤
k Dxk

)
(13a)

subject to (7b), (7c). (13b)

As before, we optimize X and {yk} iteratively. For fixed X , the optimal solution of yk is

y⋆k =

√
x⊤
k Wxk

x⊤
k Dxk

. (14)
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It remains to optimize X in (13) for fixed {yk}. Observe that x⊤Wx is not a concave function of
x since W is often a positive semi-definite matrix [22], and also that the constraint set of X is not
convex because of (7c), so the aforementioned generalized concave-convex condition does not hold
here. As a result, solving for X in (13) with {yk} held fixed is no longer a convex problem. The
above alternating optimization between X and {yk} can be recognized as the so-called Fast Iterative
Normalized Cut (FINC) algorithm of the recent work [7]. Although it manages to decouple multiple
ratios in the NCut problem, we are faced with a new challenging problem. The new problem is dealt
with in a heuristic fashion in [7]. This fact perhaps explains why the FP approach has not yet been
considered extensively in the literature despite the fractional structure of the NCut problem.

3.2 Multidimensional FP method

We now proceed to a much more sophisticated FP toolkit that accounts for multidimensional ratios.
To start, consider the following matrix extension of the traditional scalar-valued FP problem: each
Ak(x) ≥ 0 is generalized as positive semi-definite Ak(x) ∈ Sm×m

+ , while each Bk(x) > 0 is
generalized as positive definite Bk(x) ∈ Sm×m

++ . Accordingly, the ratio term is extended to the matrix
form as

Ak(x)

Bk(x)
∈ R+ =⇒ Bk(x)

−1Ak(x) ∈ Sm×m
+ .

We then arrive at a matrix extension of the sum-of-ratios problem (10):

maximzie
x∈X

K∑
k=1

tr
(
B−1

k (x)Ak(x)
)
. (15)

One main result of this paper is that the quadratic transform in Proposition 2 carries over to the matrix
ratio case, as stated in the following proposition.

Proposition 3 (Multidimensional quadratic transform) Suppose that each Ak(x) ∈ Sm×m
+ can

be factorized as
Ak(x) = [Zk(x)]

⊤[Zk(x)] where Zk(x) ∈ Rℓ×m (16)

for some positive integer ℓ. The matrix FP problem (15) is then equivalent to

maximize
x∈X ,Yk∈Rℓ×m

K∑
k=1

tr
(
2Yk[Zk(x)]

⊤ − YkBk(x)Y
⊤
k

)
, (17)

where an auxiliary variable Yk ∈ Rℓ×m is introduced for each matrix ratio B−1
k (x)Ak(x).

Proof 1 It can be shown that each Yk in (17) is always optimally determined as

Y ⋆
k = Zk(x)B

−1
k (x). (18)

Substituting the above Y ⋆
k in (17) recovers the original problem (15).

Proposition 4 The alternating optimization between x and {Yk} in (17) amounts to an MM proce-
dure, so it guarantees a nondecreasing convergence of the original optimization objective in (15), as
specified in Appendix A.1.

The key step is to optimize x for fixed {Yk}. Recall that the primal variable x is still difficult to
optimize for the NCut problem after applying the quadratic transform in Proposition 2. In contrast, it
turns out that the multidimensional quadratic transform in Proposition 3 can lead us to an efficient
iterative update of x for the NCut problem scenario, as elaborated in the next section.

4 Proposed Multidimensional-FP-based NCut

The goal of this section is to address problem (7) by means of the multidimensional FP. We begin
with a special case in which the similarity matrix W is assumed to be positive semi-definite; the
indefinite W case will be discussed later on.
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It is crucial to notice that the numerator part x⊤
k Wxk can be factorized as

x⊤
k Wxk = z⊤

k zk where zk = W
1
2xk. (19)

We remark that W
1
2 , i.e., the symmetric square root of W [23], is guaranteed to exist because we

have assumed that W ∈ Sm×m
+ for the current discussion. We then treat x⊤

k Wxk, zk, and x⊤
k Dxk

as Ak(x), Zk(x), and Bk(x), respectively, in Proposition 3, with m = 1 and ℓ = N , thus using the
multidimensional quadratic transform to reformulate the NCut problem (7) as

maximize
X,yk∈RN

K∑
k=1

tr
(
2yk(W

1
2xk)

⊤ − yk(x
⊤
k Dxk)y

⊤
k

)
(20a)

subject to (7b), (7c). (20b)

We then optimize X and {yk} iteratively. When X is held fixed, each yk is optimally determined as

y⋆
k =

W
1
2xk

x⊤
k Dxk

. (21)

Now the core question is whether X could be efficiently solved when {yk} are held fixed. The
optimization objective of X in (20a) for fixed {yk} is written as

h(X) =

K∑
k=1

tr
(
2yk(W

1
2xk)

⊤ − yk(x
⊤
k Dxk)y

⊤
k

)
. (22)

It is critical to observe that under the discrete constraint xik ∈ {0, 1} we must have

x⊤
k Dxk = 1⊤Dxk = δ⊤xk, (23)

where 1 = (1, 1, . . . , 1)⊤ is the all-ones vector and

δ = 1⊤D = [d1, d2, . . . , dN ]⊤. (24)

We can then rewrite h(X) as

h(X) =

K∑
k=1

(
2y⊤

k W
1
2xk − y⊤

k ykδ
⊤xk

)
=

K∑
k=1

µ⊤
k xk, (25)

where
µk = 2W

1
2yk − δy⊤

k yk. (26)

In (25), the first equality follows since x⊤
k Dxk is a scalar. Denote by µik the ith component of µk.

In light of (25), we can readily maximize h(X) under the constraints (7b) and (7c): it is optimal to
set xik with the largest µik on each row of X to one, while setting the rest xik of the row to zero, i.e.,

x⋆
ik =

 1 if k = arg
k′

max µik′

0 otherwise.
(27)

If there exists a tie (i.e., when more than one cluster index k′ maximizes µik′ for same i) then break
it randomly. Further, with y⋆

k in (21) plugged in (26), we obtain an efficient computation of µk as

µk =
2Wxk

x⊤
k Dxk

− δx⊤
k Wxk

(x⊤
k Dxk)2

=
2Wxk

δ⊤xk
− δx⊤

k Wxk

(δ⊤xk)2
. (28)

The merits of rewriting µk as (28) are two-fold. First, it sidesteps the update of the auxiliary variables
{yk}. Second, it no longer entails computing the square root of W . The resulting algorithm referred
to as fractional programming-based clustering (FPC) is summarized in the following.

Clearly, the FPC algorithm is guaranteed to converge in terms of the new objective value h(X), since
the iterative update of X and {µk} in FPC amounts to a block coordinate ascent for problem (20) so
that h(X) is monotonically increasing after each iteration. We can actually claim a stronger result
for FPC according to Proposition 4, as stated in the subsequent proposition.

6



Algorithm 1 Proposed fractional programming-based clustering (FPC)

1: Initialize X to a feasible value satisfying
∑K

k=1 xik = 1 and xik ∈ {0, 1} for each (i, k).
2: repeat
3: Update each µk according to (28), for k = 1, 2, . . . ,K.
4: Update each xik according to (27), for i = 1, 2, . . . , N and k = 1, 2, . . . ,K.
5: until the value of h(X) =

∑K
k=1 µ

⊤
k xk converges

Proposition 5 Not only the new objective value h(X) in (22) but also the original objective value

of the NCut problem, f(X) =
∑K

k=1
x⊤

k Wxk

x⊤
k Dxk

, is nondecreasing after each iteration of FPC.

We thus far assume that the similarity matrix W is positive semi-definite; this assumption can be
justified by arguing that a positive definite kernel [24] (e.g., the Gaussian kernel) is often used to
generate W . But what if some indefinite kernel has been adopted and hence W is not necessarily
positive semi-definite anymore? The following proposition provides a solution.

Proposition 6 Suppose that the similarity matrix W is indefinite. We can choose a sufficiently large
α > 0 so that the new matrix

W̃ = W + αD (29)
is positive semi-definite. Notice that such α must exist since

α = −λmin(W )

mini di
(30)

is a feasible choice. Then we can equivalently consider problem (7) with W̃ used in place of W ,
which can be readily addressed by the FPC algorithm.

Proof 2 See Appendix A.2.

Finally, we examine the computational complexity of the FPC algorithm. The update of X as in
(27) incurs a computational complexity of O(K2N), while the update of {µk} as in (28) incurs a
computational complexity of O(KN2). If W is indefinite, then we would further find the smallest
eigenvalue of W as required in (30). Rather than computing all the eigenvalues and then picking the
smallest, which incurs O(N3), we propose a more efficient way of computing λmin:

1. Find the largest eigenvalue of ∥W ∥FI − W , denoted as λ1, by the power method [25],
where ∥ · ∥F is the Frobenius norm.

2. Compute the smallest eigenvalue as λmin(W ) = ∥W ∥F − λ1.

Thus, the overall complexity of finding α as in (30) is O(N2). To sum up, the per-iteration complexity
of FPC equals O(KN2), while the traditional SC algorithm incurs a complexity of O(N3).

5 Experiments

We validate the performance of the proposed FPC algorithm on 8 common datasets as summarized
in Table 1. The benchmarks are the SC [4], FINC [7], and FCD [17]. We use the Gaussian kernel
to generate the similarity matrix, i.e., wij = exp

(
−∥vi − vj∥22

)
, where vi and vj are the feature

vectors of data points i and j. All the tests were carried out on a desktop equipped with 2.10 GHz
CPU×12. Throughout the tables, we highlight the best performance by using the bold font.

5.1 Optimization objective of NCut

We first evaluate the performance of the different algorithms in minimizing ncut(V1,V2, . . . ,VK) as
defined in (6). We run each algorithm 10 times with the random starting point generated for each
trial, and then pick the best one. Table 2 summarizes the results. Observe that the proposed FPC
method achieves the lowest NCut objective across all the datasets. For instance, the NCut objective
of FPC is 0.19% lower than that of FCD for the dataset Office+Caltech10 with K = 10 clusters, and
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Table 1: Datasets used for the task of dividing N data points into K clusters.

Dataset N K Number of features Source

Breast 106 6 9 UCI datasets[26]
Thyroid 215 3 5 UCI datasets[26]

Office+Caltech10 2533 10 800 Github transfer-learning[27]
Splice 3175 3 240 UCI datasets[26]
Rice 3810 2 7 UCI datasets[26]

Landsat 6435 7 36 UCI datasets[26]
USPS 9298 10 256 LIBSVM[28]

Epileptic 11500 5 178 UCI datasets[26]

Table 2: NCut objective values achieved by the different algorithms with random initialization.

SC FINC FCD FPC

Breast 2.438568 2.445278 2.446499 2.431813
Thyroid 0.983144 0.983393 0.986163 0.983115

Office+Caltech10 4.483921 4.483962 4.491925 4.483501
Splice 0.997651 0.999867 0.998569 0.997636
Rice 0.499193 0.499999 0.499209 0.499193

Landsat 2.994675 2.999986 2.995302 2.994335
USPS 4.476479 4.476404 4.476591 4.475869

Epileptic 1.992376 1.991369 1.992688 1.991311

Table 3: NCut objective values achieved by the different algorithms with the SC initialization.

SC SC+FINC SC+FCD SC+FPC

Breast 2.438695±7.5e-5 2.442353±4.1e-5 2.438695±7.5e-5 2.437931±2.8e-4
Thyroid 0.983144±0.0 0.989329±0.0 0.983144±0.0 0.983144±0.0

Office+Caltech10 4.483945±1.1e-5 4.483373±6.0e-6 4.483635±2.9e-5 4.483280±9.0e-6
Splice 0.997651±0.0 0.997651±0.0 0.997651±2.0e-5 0.997638±0.0
Rice 0.499193±0.0 0.499193±0.0 0.499193±0.0 0.499193±0.0

Landsat 2.994678±2.0e-6 2.994678±2.0e-6 2.994499±7.5e-5 2.994335±0.0
USPS 4.476546±1.7e-4 4.475926±1.4e-4 4.475932±1.4e-4 4.475913±1.3e-4

Epileptic 1.992378±3.0e-6 1.991756±1.5e-5 1.991353±0.0 1.991313±0.0
Note: Each entry has the form [objective value]±[standard variance]. Red color indicates degradation
while blue color indicates improvement.

0.07% lower for the dataset Epileptic with N = 11500 data points. All the benchmarks except SC
are strictly inferior to FPC; SC is equally good as FPC only on the dataset Rice.

Moreover, we consider first using SC to obtain a raw clustering decision and then using other
algorithms to refine it. The test results are summarized in Table 3. Observe that using FPC after SC
can achieve the best performance on all 8 datasets. In particular, it strictly improves upon the SC
initialization on 6 datasets. It is worth observing that FINC may even yield worse performance after
the initialization by SC; this is because FINC cannot guarantee that the new problem is optimally
solved per iteration as formerly mentioned in Section 3.1. Finally, in Fig. 2 we find the global
optimum for two small-size datasets via exhaustive search, and use it as the benchmark to compare
with the proposed FPC algorithm; observe that FPC attains convergence to the global optimum after
merely 3 iterates.

5.2 Other performance metrics

Aside from the Ncut optimization criterion, the following commonly used performance metrics in prac-
tice are considered for the different clustering algorithms: the accuracy (ACC), the normalized mutual
information (NMI) [29], and the adjusted random index (ARI) [30]. Unlike ncut(V1,V2, . . . ,VK),
the above metrics are proportional to the performance, i.e., the higher metric value, the better cluster-
ing. The test results are summarized in Table 4. Although these performance metrics are not directly
tied to the NCut objective, the proposed FPC method still achieves the highest scores in many cases.
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Figure 2: Convergence in terms of the NCut objective value for two UCI datasets.

Table 4: The performance metrics of ACC, NMI, and ARI achieved by the different algorithms.

SC FINC FCD FPC SC FINC FCD FPC
Dataset Breast Thyroid
ACC 0.4906 0.5000 0.3868 0.5283 0.8837 0.9163 0.7860 0.9070
NMI 0.4942 0.4798 0.3525 0.5052 0.4956 0.6061 0.3396 0.5780
ARI 0.2931 0.3104 0.1582 0.3379 0.6082 0.7167 0.4121 0.6869

Dataset Office+Caltech10 Splice
ACC 0.3533 0.3308 0.1717 0.3640 0.6646 0.3512 0.5096 0.7225
NMI 0.2347 0.2358 0.0704 0.2491 0.2856 0.0015 0.2149 0.3529
ARI 0.1440 0.1314 0.0440 0.1469 0.2686 0.0007 0.1650 0.3514

Dataset Rice Landsat
ACC 0.8966 0.5142 0.8853 0.8992 0.6044 0.1584 0.5809 0.6611
NMI 0.5129 0.0006 0.4845 0.5216 0.4905 0.0013 0.4073 0.6111
ARI 0.6288 0.0005 0.5937 0.6371 0.3948 0.0000 0.3423 0.5328

Dataset USPS Epileptic
ACC 0.7037 0.6861 0.7060 0.6920 0.3609 0.3386 0.3743 0.3197
NMI 0.6419 0.6406 0.6333 0.6377 0.1627 0.2419 0.1909 0.2370
ARI 0.5724 0.5626 0.5734 0.5679 0.1119 0.1385 0.1326 0.1332

We further try out the different clustering algorithms in the image segmentation task. Using the image
dataset from [31], we perform the color histogram and the local binary pattern analysis for about
500 superpixels to extract the features as in [32]. As shown in Figure 3, the clustering by FPC gives
clearer boundaries of the objects than other methods.

Moreover, Figure 4 shows the average time consumption of the different algorithms. It can be seen
that FPC runs 73% faster than FINC, and runs equally fast as SC. We remark that FCD requires the
least running time because it tends to get trapped in a suboptimal point prematurely at the early stage.

6 Conclusion and limitation

This work proposes a novel application of multidimensional FP to the NCut clustering, differing from
the previous works that rely on the traditional scalar-ratio FP such as Dinkelbach’s transform and
quadratic transform. The main merit of using multidimensional FP is that the new 0-1 problem can
be efficiently solved via linear search. Further, the resulting FPC algorithm can be interpreted as an
MM procedure with provable monotonic convergence in terms of the NCut optimization criterion.
Thus far, we only show that its per-iteration complexity is lower than the overall complexity of the
traditional SC algorithm.
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Figure 3: Image segmentation by the different algorithms.
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Figure 4: Running time of the different algorithms when applied to the different datasets.
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Appendix

A.1 Proof of Proposition 4

We begin with a brief review of the MM theory [33, 34]. Consider a general constrained optimization
problem

maximize
x∈X

f(x). (31)

Rather than solving the above problem directly, the MM theory deals with an approximation of (31)
iteratively. In principle, we construct a surrogate function g(x|x̂) of x given the condition parameter
x̂ ∈ X , such that

g(x|x̂) ≤ f(x), (32)
g(x̂|x̂) = f(x̂). (33)

Then the MM method solves a sequence of new problems of the surrogate function:

maximize
x∈X

g(x|x̂), (34)

with x̂ iteratively updated to the previous solution x. Specifically, with the solution of (34) in the
(t− 1)th iteration denoted by x̂(t−1), we construct a surrogate function g(x|x̂(t−1)) for the t iteration
and then obtain the new solution x̂(t) of (34), and so forth, as illustrated in Figure 5.

Figure 5: The original objective value f(x) is nondecreasing after each iteration of the MM method.

Theorem 1 (Monotonic convergence [33, 34]) The MM method yields a nondecreasing conver-
gence of the original objective value f(x), i.e.,

f(x̂(t−1)) ≤ f(x̂(t)) for t = 1, 2, . . . . (35)

We now show that the alternating optimization between x and {Yk} in (17) can be interpreted as an
MM method. We still use the superscript t to index the iteration. Recall also that each Yk in the tth
iteration is optimally updated as

Y
(t)
k = Zk(x

(t−1))B−1
k (x(t−1)). (36)

We now view the update of Yk as a function of the previous solution x̂, that is

Yk(x̂) = Zk(x̂
(t−1))B−1

k (x̂(t−1)). (37)

Substituting each Yk with Yk(x̂) in the new objective function in (17) gives rise to a function of x
conditioned on x̂:

g(x|x̂) =
K∑

k=1

tr
(
2Zk(x̂

(t−1))B−1
k (x̂(t−1))[Zk(x)]

⊤

− Zk(x̂
(t−1))B−1

k (x̂(t−1))Bk(x)[Zk(x̂
(t−1))B−1

k (x̂(t−1))]⊤)
)
. (38)
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Notice that maximizing the objective function in (17) with {Yk} fixed is equivalent to maximizing
g(x|x̂) where x̂ is fixed at the solution of the previous iteration.

Most importantly, it can be shown that g(x|x̂) meets the conditions (32) and (33) for the original
objective function in (15), so the alternating optimization between x and {Yk} in (17) amounts to an
MM procedure. The result of Proposition 4 then immediately follows by Theorem 1.

A.2 Proof of Proposition 6

First of all, because W is indefinite, its minimum eigenvalue λmin(W ) must be negative. With α in
(30), the matrix W̃ can be rewritten as

W̃ = W − λmin(W )

mini di
D

= W − λmin(W )I − λmin(W )diag

[
d1

mini di
− 1, . . . ,

dN
mini di

− 1

]
. (39)

It is evident that W −λmin(W )I and −λmin(W )diag
[

d1

mini di
−1, . . . , dN

mini di
−1

]
are both positive

semi-definite, so W̃ is positive semi-definite too. Moreover, it is easy to see that problem (7) is
equivalent to

maximize
X

Kα+

K∑
k=1

x⊤
k Wxk

x⊤
k Dxk

(40a)

subject to (7b), (7c), (40b)

which can be further rewritten as

maximize
X

K∑
k=1

x⊤
k W̃xk

x⊤
k Dxk

(41a)

subject to (7b), (7c), (41b)

The proof is then completed.
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