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Abstract—This paper concerns the coordinate multi-cell beam-
forming design for integrated sensing and communications
(ISAC). The optimization objective is to maximize a weighted sum
of the communication rates and the sensing Fisher information.
The conventional beamforming method for massive multiple-
input multiple-output transmission, i.e., the weighted minimum
mean square error (WMMSE) algorithm, has a natural extension
to the ISAC problem scenario from a fractional programming
(FP) perspective. However, the extended WMMSE algorithm
requires computing the N ×N matrix inverse extensively, where
N is proportional to the antenna array size, so the algorithm
becomes quite costly when antennas are massively deployed.
To address this issue, we develop a nonhomogeneous bound
and use it in conjunction with the FP technique to solve the
ISAC beamforming problem without the need to invert any large
matrices. It is further shown that the resulting new FP algorithm
has an intimate connection with gradient projection, based on
which the convergence can be accelerated.

I. INTRODUCTION

Integrated sensing and communications (ISAC) is an emerg-
ing wireless technique that reuses the network infrastructure
and radio signals for both communications and sensing—
which used to be dealt with separately in the conventional
networks, in order to reduce the infrastructure cost and boost
the spectral efficiency. This work focuses on the large antenna
array case of ISAC, aiming at a system-level optimization by
coordinating the antenna beamformers across multiple cells.

The ISAC beamforming problem is a nontrivial task due to
the nonconvex nature of the underlying optimization problem.
Quite a few advanced optimization tools have been considered
in the previous attempts. Semi-definite relaxation (SDR) is a
typical example because the ISAC beamforming problem can
be somehow relaxed in a quadratic form, e.g., as a quadratic
semi-definite program (QSDP) [2] or a semi-definite program
(SDP) [3]. Successive convex approximation (SCA) constitutes
another popular approach in this area. For example, [4] uses
SCA to convert the ISAC beamforming design to a second-
order cone programming (SOCP) problem—which can be
efficiently solved by the standard convex optimization method.
Another line of studies [5], [6] utilize the majorization-
minimization (MM) theory to make the ISAC beamforming

The complete version [1] is available at https://arxiv.org/abs/2406.10910.
This work was supported in part by Guangdong Major Project of Basic and
Applied Basic Research (No. 2023B0303000001), in part by Shenzhen Steady
Funding Program, in part by National Nature Science Foundation of China
(No. 62206182), and in part by Guangdong Basic and Applied Basic Research
Foundation (No. 2024A1515010154).

Fig. 1. A multi-cell ISAC system with L = 3 and K = 3. The circle is the
point target to sense. The arrows are the transmit signals and the echo signals.

problem convex, especially when the passive beamforming
of the intelligent reflecting surface (IRS) is involved. More-
over, because the ISAC beamforming problem is fractionally
structured, the fractional programming (FP) technique, i.e., the
quadratic transform [7], [8], forms the building block of [9],
[10].

To exploit the degrees-of-freedom (DoF), the massive
MIMO technology has been considered for the ISAC sys-
tem. In principle, as shown in [11], the efficiency of target
detection improves with the antenna array size. From the
algorithm design viewpoint, however, the large antenna array
can pose a tough challenge. Actually, even considering the
communications task alone, the beamforming design with
massive antennas is already quite difficult. For instance, al-
though the WMMSE algorithm [12], [13] has been extensively
used for the MIMO transmission, it is no longer suited for
the massive MIMO case because the algorithm then entails
computing the large matrix inverse extensively per iteration.
Other standard optimization methods such as SDR and SCA
are faced with similar issues since they involve the matrix
inverse operation implicitly when performing the interior-point
optimization. Some recent efforts aim to improve the efficiency
of WMMSE in the massive MIMO case, e.g., [14] proposes
a light WMMSE algorithm that has a lower complexity of
the matrix inverse computation under certain conditions. The
present paper is most closely related to a series of recent works
[15], [16] that use a nonhomogeneous bound from [17] to
avoid matrix inverse. While [15], [16] focus on the transmit
beamforming alone, this work proposes a novel use of the
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non-homogeneous bound that accounts for both the transmit
beamforming and the echo receive beamforming.

II. MULTI-CELL ISAC SYSTEM MODEL

Consider a downlink multi-cell ISAC system with L cells.
Assume that each cell has K downlink users. For each BS
ℓ = 1, 2, . . . , L, there are two tasks: (i) send independent
messages to the K downlink users in its cell by spatial
multiplexing; (ii) detect the direction of arrival (DoA), θl, for
a point target. An illustrative example of the ISAC system
as described above is shown in Fig. 1. We assume that BS
ℓ has N t

ℓ transmit antennas as well as Nr
ℓ receive antennas

for detecting the echos. The kth downlink user in the ℓth cell
is indexed as (ℓ, k). User (ℓ, k) has Mℓk receive antennas.
Notably, the transmit antenna array size N t

ℓ and the echo
antenna array size Nr

ℓ at the BS side can be large, whereas
the receive antenna array size Mℓk at the terminal side is often
small, as typically assumed for a massive MIMO network.

A. Communications Model

Let Sℓk ∈ Cdℓk×T be the normalized symbol sequence in-
tended for user (ℓ, k), where dℓk is the number of data streams
and T is the block length. Note that dℓk is often small since
dℓk ≤ Mℓk. Let Wℓk ∈ CNt

ℓ×dℓk be the transmit beamformer
of BS ℓ for Sℓk. The different data streams are assumed to
be statistically independent. Denote by Hℓk,i ∈ CMℓk×Nt

i the
channel from BS i to user (ℓ, k). Each entry of the background
noise ∆ℓk ∈ CMℓk×T is drawn i.i.d. from CN (0, σ2). The data
rate for user (ℓ, k) can be computed as

Rℓk = log
∣∣∣Idℓk

+W H
ℓkH

H
ℓk,ℓF

−1
ℓk Hℓk,ℓWℓk

∣∣∣, (1)

where

Fℓk =
∑

(i,j)̸=(ℓ,k)

Hℓk,iWijW
H
ijH

H
ℓk,i + σ2IMℓk

. (2)

For the good of communications, we wish to maximize the
data rates throughout the network.

B. Sensing Model

Recall that BS ℓ has N t
ℓ transmit antennas (for commu-

nications) and Nr
ℓ receive antennas (for sensing). Denote by

at
ℓ(θℓ) the steering vector of the transmit antennas, ar

ℓ(θℓ) the
steering vector of the receive antennas, and ξℓi the reflection
coefficient from BS i to BS ℓ. The echo signal is corrupted
by the background noise ∆̃ℓ ∈ CNr

ℓ ×T drawn i.i.d. from
CN (0, σ̃2). Each BS ℓ recovers the DoA θℓ from the received
echo signal Ỹℓ.

Mean squared error (MSE) is a common performance metric
of estimation. Nevertheless, it is difficult to analyze the MSE
of θℓ in our problem case. Instead, we adopt the Fisher
information as the performance metric, following the previous
works [18], [19] in the ISAC field. Define the response matrix

Gℓℓ = ξℓℓa
r
ℓ(θℓ)(a

t
ℓ(θℓ))

⊤. (3)

Denote by Gℓi the interference channel from BS i to BS ℓ for
any i ̸= ℓ. Let

µℓ =

L∑
i=1,i̸=ℓ

K∑
j=1

(IT ⊗GℓiWij)sij + δ̃ℓ, (4)

where δ̃ℓ = vec(∆̃ℓ) and sℓk = vec(Sℓk). Define Qℓ to be

Qℓ = E
[
µℓµ

H
ℓ

]
= IT ⊗

(
L∑

i=1,i̸=ℓ

K∑
j=1

GℓiWijW
H
ijG

H
ℓi + σ̃2INr

ℓ

)
.

The Fisher information of θℓ is then given by [20]

Jℓ = 2T

{
K∑

k=1

tr
(
(ĠℓℓWℓk)

HQ̂−1
ℓ (ĠℓℓWℓk)

)}
, (5)

where Ġℓℓ = ∂Gℓℓ/∂θℓ and

Q̂ℓ =
∑
i ̸=ℓ

K∑
j=1

GℓiWijW
H
ijG

H
ℓi + σ̃2INr

ℓ
. (6)

For the good of sensing, we wish to maximize the Fisher
information of θℓ at each BS ℓ.

C. ISAC Beamforming Problem

To account for both communications and sensing, we con-
sider maximizing a weighted sum of data rates and Fisher
information:

maxmize
W

L∑
ℓ=1

K∑
k=1

ωℓkRℓk +

L∑
ℓ=1

βℓJℓ (7a)

subject to
K∑

k=1

∥Wℓk∥2F ≤ P, (7b)

where W = {W11, . . . ,WLK} is the collocation of all
beamformers, ωℓk, βℓ ≥ 0 are the given nonnegative weights
reflecting the priorities of the communications and sensing
tasks, and P is the power budget of each BS.

III. MAIN RESULTS

As a key observation, problem (7) is fractionally structured.
In light of this FP interpretation, we first show that the tra-
ditional WMMSE algorithm [12], [13] for the communication
beamforming can be extended for the ISAC beamforming.

A. Extended WMMSE for ISAC Beamforming

First, we use the Lagrangian dual transform [8] to move
the ratios to the outside of log-determinants for the term∑L

ℓ=1

∑K
k=1 ωℓkRℓk in (7a). Problem (7) is converted to

maximize
W ,Γ

fr(W ,Γ) +

L∑
ℓ=1

βℓJℓ (8a)

subject to
K∑

k=1

∥Wℓk∥2F ≤ P (8b)



fq(W ,Γ,Y , Ỹ ) =
∑
ℓ,k

[
tr
(
2ℜ{W H

ℓkΛℓk} − ωℓkY
H
ℓkUℓkYℓk(I + Γℓk)− 2TβℓỸ

H
ℓkQ̂ℓỸℓk

)
+ ωℓk

(
log |I + Γℓk| − tr(Γℓk)

)]
(11)

where

fr(W ,Γ) =

L∑
ℓ=1

K∑
k=1

ωℓk

[
log
∣∣Idℓk

+ Γℓk

∣∣− tr
(
Γℓk

)
+ tr

(
(Idℓk

+ Γℓk)W
H
ℓkH

H
ℓk,ℓU

−1
ℓk Hℓk,ℓWℓk

)]
(9)

with Uℓk =
∑L

i=1

∑K
j=1 Hℓk,iWijW

H
ijH

H
ℓk,i + σ2IMℓk

. For
fixed W , problem (8) is convex in Γ. According to the first-
order condition, each Γℓk can be optimally determined as

Γ⋆
ℓk = W H

ℓkH
H
ℓk,ℓF

−1
ℓk Hℓk,ℓWℓk. (10)

Notice that (8) is a sum-of-weighted-ratios problem of W
when Γ is fixed, so the quadratic transform [8] is applicable.
The optimization objective in (8a) is then further recast to
fq(W ,Γ,Y , Ỹ ) as shown in (11) with

Λℓk = ωℓkH
H
ℓk,ℓYℓk(Idℓk

+ Γℓk) + 2TβℓĠ
H
ℓℓỸℓk. (12)

For the notational clarity in (11), we use Yℓk (Ỹℓk) to denote
each auxiliary variable introduced for the communication task
(sensing task). The resulting reformulation of problem (8) is

maximize
W ,Γ,Y , Ỹ

fq(W ,Γ,Y , Ỹ ) (13a)

subject to
K∑

k=1

∥Wℓk∥2F ≤ P (13b)

When W and Γ are both held fixed, the above problem is
jointly convex in Y and Ỹ , so we can optimally determine
them by the first-order condition as

Y ⋆
ℓk = U−1

ℓk Hℓk,ℓWℓk, (14)

Ỹ ⋆
ℓk = Q̂−1

ℓ ĠℓℓWℓk. (15)

By the identity tr(AAH) = ∥A∥2F , we get the optimal Wℓk:

W ⋆
ℓk = arg min

W∈W
∥L

1
2

ℓ (Wℓk −L−1
ℓ Λℓk)∥2F , (16)

where

W =

{
W :

K∑
k=1

∥Wℓk∥2F ≤ P, ∀ℓ

}
, (17)

and

Lℓ =

L∑
i=1

K∑
j=1

ωijH
H
ij,ℓYij(Idij

+ Γij)Y
H
ijHij,ℓ

+ 2T

L∑
i=1,i̸=ℓ

K∑
j=1

GH
iℓ(βiỸijỸ

H
ij )Giℓ. (18)

We summarize the above iterative optimization steps in Algo-
rithm 1.

Algorithm 1 Extended WMMSE for ISAC Beamforming
1: Initialize W to a feasible value.
2: repeat
3: Update each Γℓk by (10).
4: Update each Yℓk and Ỹℓk by (14) and (15), resp.
5: Update each Wℓk by (16).
6: until the objective value converges

Remark 1: Notice that updating W as in (16) and updating
Ỹ as in (15) both entail inverting matrices, which can be quite
costly when massive antennas are deployed so that Nr

ℓ or/and
N t

ℓ is large.

B. Large Matrix Inverse Elimination

Before tackling the large matrix inverse issue of the ISAC
beamforming problem, we first illustrate how this issue can
be addressed in a toy example. The main tool is stated in the
following lemma:

Lemma 1 (Nonhomogeneous Bound): Suppose that the two
Hermitian matrices L,K ∈ Cd×d satisfy L ⪯ K, e.g., when
K = λI where λ = λmax(L) with λmax(L) being the largest
eigenvalue of L. Then for any two matrices X,Z ∈ Cd×m,
one has

tr(XHLX) ≤ tr
(
XHKX + 2ℜ{XH(L−K)Z}

+ZH(K −L)Z
)
, (19)

where the equality holds if Z = X .

Example 1: Consider the following single-ratio problem:

maximize
X∈X

tr((AX)H(BXXHBH)−1(AX)), (20)

where A,B ∈ Cn×d, X ∈ Cd×m, and X is a nonempty set.
By quadratic transform, the above problem can be recast to

maximize
X∈X ,Y

fq(X,Y ), (21)

where

fq(X,Y ) = tr
(
2ℜ{XHAHY } −XHBHY Y HBX

)
. (22)

Next, treating
L = BHY Y HB (23)

and applying the nonhomogeneous bound in Lemma 1, we can
convert problem (21) to

maximize
X∈X ,Y ,Z

go(X,Y ,Z), (24)



gs(W ,Γ,Y , Ỹ ,Z, Z̃) =
∑
ℓ,k

[
tr
(
ℜ{2W H

ℓkΛℓk + 2Ỹ H
ℓk(λ̃ℓINr

ℓ
− L̃ℓ)Z̃ℓk + Z̃H

ℓk(L̃ℓ − λ̃ℓINr
ℓ
)Z̃ℓk − (2Wℓk −Zℓk)

HDℓZℓk

+ λℓ(2W
H
ℓkZℓk −ZH

ℓkZℓk −W H
ℓkWℓk)}

)
+ ωℓk log |Idℓk

+ Γℓk| − tr
(
ωℓkΓℓk + ωℓkσ

2(Idℓk
+ Γℓk)Y

H
ℓkYℓk

)]
(34)

where the new objective function is

go(X,Y ,Z) = tr
(
2ℜ{XH(AHY ) +XH(λId −L)Z}

+ZH(L− λId)Z − λXHX
)

(25)

with λ = λmax(L). X can now be optimally determined for
go(X,Y ,Z) in closed form without computing the matrix
inverse when (Y ,Z) are held fixed. This desirable result
motivates us to apply Lemma 1 one more time to get rid of
the matrix inverse for the optimal update of Y in solving (24).
Specifically, rewriting (25) as

go(X,Y ,Z⋆) = tr
(
ℜ{−Y H(BZ⋆(2X −Z⋆)HBH)Y

+ 2Y H(AX) + λ(2XHZ⋆ −XHX − (Z⋆)HZ⋆)}
)

(26)

and treating
L̃ = BZ⋆(2X −Z⋆)HBH, (27)

problem (24) can be further recast to

maximize
X∈X ,Y ,Z⋆,Z̃

gs(X,Y ,Z⋆, Z̃), (28)

where

gs(X,Y ,Z⋆, Z̃) = tr
(
ℜ{2Y H(AX + (λ̃In − L̃)Z̃)

+ Z̃H(L̃− λ̃In)Z̃ + λ(2XHZ⋆ −XHX − (Z⋆)HZ⋆)

− λ̃Y Y H}
)

(29)

with λ̃ = λmax(L̃). We propose optimizing the variables of
gs(X,Y ,Z, Z̃) in an iterative fashion as

· · · → Xτ → Zτ → Y τ → Z̃τ → Xτ+1 → · · · .

We now specify the iterative optimization steps. First, accord-
ing to Lemma 1, Z and Z̃ are optimally updated as

Z⋆ = X and Z̃⋆ = Y . (30)

With the optimal Z̃⋆ = Y plugged in gs(X,Y , Z̃,Z), we
can find the optimal update of X by completing the square as

X⋆ = Z +
1

λ
(AHY −LZ). (31)

Likewise, after Z has been optimally updated to X , we can
find the optimal update of Y by completing the square as

Y ⋆ = Z̃ +
1

λ̃
(AX − L̃Z̃). (32)

We remark that the above iterative optimization steps do not
incur any matrix inverse.

C. Nonhomogeneous FP for ISAC Beamforming

We now extend the result of Example 1 to the multi-ratio
FP case for the ISAC beamforming. First, we still apply the
Lagrangian dual transform and the quadratic transform to
problem (7), so that the original problem is converted to (13).

In order to get rid of large matrix inverse, we follow the
procedure in Example 1 and reformulate problem (13) further.
After two uses of the nonhomogeneous bound, problem (13)
is equivalent to

maximize gs(W ,Γ,Y , Ỹ ,Z, Z̃) (33a)

subject to
K∑

k=1

∥Wℓk∥2F ≤ P, (33b)

The new objective function is shown in (34) as displayed at
the top of the page, where

Dℓ =

L∑
i=1

K∑
j=1

ωℓjH
H
ij,ℓYij(Idij + Γij)Y

H
ijHij,ℓ, (35)

L̃ℓ = 2T

L∑
i=1,i̸=ℓ

K∑
j=1

Giℓ(βiZij(2Wij −Zij)
H)GH

iℓ

+ σ̃2INr
ℓ
, (36)

λ̃ℓ = λmax(L̃ℓ), λℓ = λmax(Lℓ), and Lℓ was shown earlier
in (18). Now, following the steps in Example 1, we consider
optimizing the variables in (33) iteratively as

· · · → W → Z → Γ → Y → Ỹ → Z̃ → W → · · · .

According to Lemma 1, Z and Z̃ are optimally updated as

Z⋆
ℓk = Wℓk, (37)

Z̃⋆
ℓk = Ỹℓk. (38)

The optimal Γ and Y are still determined as in (10) and (14);
notice that updating Yℓk requires computing the matrix inverse
Uℓk ∈ CMℓk×Mℓk , but this is tolerable since the number of
receiver antennas Mℓk is typically a small integer. With the
optimal Z̃ = Ỹ plugged in gs(W ,Γ,Y , Ỹ , Z̃,Z), we can
find the optimal update of Wℓk as

W ⋆
ℓk =


Ŵℓk if

∑
j ∥Ŵℓj∥2F ≤ P√

Pℓ∑
j ∥Ŵℓj∥2

F

Ŵℓk otherwise,
(39)

where

Ŵℓk = Zℓk +
1

λℓ
(Λℓk −LℓZℓk). (40)

After Z has been optimally updated to W , we obtain the



Algorithm 2 Nonhomogeneous FP for ISAC Beamforming

1: Initialize W to a feasible value, Ỹ according to (15), and
Z̃ according to (37).

2: repeat
3: Update each Zℓk by (38).
4: Update each Γℓk by (10).
5: Update each Yℓk and Ỹℓk by (14) and (41), resp.
6: Update each Z̃ℓk by (37).
7: Update each Wℓk by (39).
8: until the objective value converges

Algorithm 3 Fast FP for ISAC Beamforming

1: Initialize W to a feasible value, Ỹ according to (15), and
Z̃ according to (37).

2: repeat
3: Update V according to (43) and set Wℓk = Vℓk.
4: Update each Zℓk by (38).
5: Update each Γℓk by (10).
6: Update each Yℓk and Ỹℓk by (14) and (41), resp.
7: Update each Z̃ℓk by (37).
8: Update each Wℓk by (39).
9: until the objective value converges

optimal update of Ỹ as

Ỹ ⋆
ℓk = Z̃ℓk +

1

λ̃ℓ

(2TβℓĠℓℓWℓk − Q̂ℓZ̃ℓk). (41)

Algorithm 2 summarizes the above steps and is referred to as
the nonhomogeneous FP method for the ISAC beamforming.
Differing from the extended WMMSE algorithm in Algorithm
1, the above new algorithm does not require computing any
large matrix inverse.

D. Proposed Fast FP for ISAC Beamforming

In this work, we not only aim to eliminate large matrix
inverse in order to reduce the per-iteration complexity, but also
seek to accelerate the convergence in iterations. Our approach
is based upon the following crucial observation: Algorithm 2
has a deep connection with gradient projection.

Proposition 1: Algorithm 2 is equivalent to a gradient
projection:

W τ+1
ℓk = PW

(
W τ

ℓk + ζτ · ∂fo(W
τ )

∂Wℓk

)
, (42)

where τ is the iteration index, ζτ > 0 is the gradient step size
in the τ th iteration, PW(·) is the Euclidean projection on W ,
and fo(W

τ ) is the primal objective function in (7a).
Proof: Please see the long version of this paper [1].

In light of the connection between Algorithm 2 and gradient
projection, we can readily accelerate Algorithm 2 by using
Nesterov’s extrapolation strategy [21]. We now extrapolate
each Wℓk along the direction of the difference between the
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Fig. 2. The convergence behaviors of the different ISAC beamforming
algorithms when Nr = Nt = 128.

preceding two iterates before the gradient projection, i.e.,

V τ−1
ℓk = W τ−1

ℓk + υτ−1(W τ−1
ℓk −W τ−2

ℓk ), (43)

W τ
ℓk = PW

(
V τ−1
ℓk +

1

λτ
ℓ

(Λℓk −LℓV
τ−1
ℓk )

)
, (44)

where τ is the iteration index, the extrapolation step υτ is
chosen as

υτ = max

{
τ − 2

τ + 1
, 0

}
, for τ = 1, 2, . . . , (45)

the starting point is W−1 = W 0. Algorithm 3 summarizes
the above steps and is referred to as the fast FP algorithm.

IV. NUMERICAL RESULTS

We validate the performance of the proposed algorithms
numerically in a 7-cell wrapped-hexagonal-around network.
Within each cell, the BS is located at the center and 45 down-
link users are randomly distributed. The BS-to-BS distance is



set to be 800 meters. Let every BS have 128 transmit (resp.
receive) antennas. Let every downlink user have 4 antennas;
4 data streams are intended for each of them. The maximum
transmit power P at each BS is set to 20 dBm, the background
noise power level at the downlink user side σ2 is −80 dBm,
and the background noise power level at the BS side σ̃2 is set
to 0 dBm. The downlink distance-dependent path-loss is given
by 15.3 + 37.6 log10(d) + ξ (in dB), where d represents the
BS-to-user distance in meters, and ξ is a zero-mean Gaussian
random variable with a standard variance of 8 dB—which
models the shadowing effect. For the sensing, every reflection
coefficient ξℓi is set to 1 as in [22]. The block length T equals
30. The priority weights in problem (7) are set as βℓ = 10−11

and ωℓk = 1. We use the same starting point for all the
competitor algorithms for the comparison fairness.

Fig. 2 shows the convergence behaviors of the different
algorithms. Observe from Fig. 2(a) that the extended WMMSE
converges faster than the nonhomogeneous FP and the fast FP
in iterations. From an MM perspective, this is because the
extended WMMSE gives a tighter approximation of the orig-
inal objective function fo(W ). However, this does not imply
that the absolute running time of the extended WMMSE is
the shortest, because in the meanwhile the extended WMMSE
requires heavier computations per iteration due to the large
matrix inversion. Actually, it can be seen from Fig. 2(b)
that the nonhomogeneous FP converges faster than extended
WMMSE in time. For example, extended WMMSE requires
about 23 seconds to reach the objective value of 158, while
the nonhomogeneous FP merely requires 18 seconds. Thus,
in practice, the nonhomogeneous FP still runs much faster
than the extended WMMSE. Further, observe also that the
fast FP outperforms the nonhomogeneous FP not only in
terms of the iteration efficiency but also in terms of the
time efficiency. For example, to reach the objective value
of 160, the nonhomogeneous FP requires 8 iterations and
14 seconds, while the fast FP just requires 2 iterations and
3.5 seconds. Thus, the fast FP can further improve upon
the nonhomogeneous FP significantly, thanks to Nesterov’s
acceleration strategy.

V. CONCLUSION

This paper considers the ISAC beamforming optimization
for a multi-cell massive MIMO network. Based on the FP
technique, we first extend the classic WMMSE algorithm from
the communications case to the ISAC case. This approach
works but at a high cost of computation because the extended
WMMSE requires inverting large matrices. We then develop
the non-homogeneous bound to eliminate the large matrix
inversion from the extended WMMSE (which can be also
viewed as an FP based method). As a result, the per-iteration
complexity can be significantly reduced. Furthermore, we
show that the above FP based method is connected to gradient
projection, and then propose using Nesterov’s extrapolation
scheme to render the beamforming algorithm converge much
more rapidly.
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