
CROSSWORD: A SEMANTIC APPROACH TO TEXT COMPRESSION VIA MASKING

Mingxiao Li†, Rui Jin†, Liyao Xiang§, Kaiming Shen†, and Shuguang Cui†

†School of Science and Engineering, FNii, The Chinese University of Hong Kong (Shenzhen), China
§Shanghai Jiao Tong University, China

Email: {mingxiaoli, ruijin}@link.cuhk.edu.cn, xiangliyao08@sjtu.edu.cn,
shenkaiming@cuhk.edu.cn, shuguangcui@cuhk.edu.cn

ABSTRACT
Conventional data compression methods typically model the in-
formation source as an i.i.d. stochastic process, thereby estab-
lishing the fundamental limit as entropy for lossless compres-
sion and as mutual information for lossy compression. How-
ever, the source in the real world (e.g., text, music, and speech)
is often statistically ill-defined because of its close connection
to human perception. This work aims to exploit the semantic as-
pect of text as inspired by the puzzle crossword. The main idea
is to only compress those semantically important words while
masking the rest; the proposed decompressor can recover all the
missing words automatically according to context. Experiments
show that the proposed semantic approach can achieve much
higher compression efficiency than the state-of-the-art semantic
compression method.

1. INTRODUCTION

Data compression, or source coding, has been widely recog-
nized as an artful trick that involves human perception, espe-
cially for sources like literature, music, speech, etc. Shannon’s
seminal paper [1] asserts that “these semantic aspects of com-
munication are irrelevant to the engineering problem” under two
assumptions: (i) the source can be modeled as an i.i.d. (or at
least stationary) stochastic process; (ii) the source sequence is
infinitely long. But neither of the above two assumptions may
hold in practice, so the ultimate performance of data compres-
sion shall not be limited by the classic information theory. This
work proposes a semantic approach to text compression, which
improves upon the traditional model-based approach. The main
idea is to mask those semantically minor words without altering
the overall text meaning.

The proposed masking strategy for semantic data compres-
sion is inspired by the puzzle crossword—the goal of which is
to recover the missing letters in the blank grids so as to form
words or phrases in accordance with the given letters in the rest
grids. Likewise, if a certain word can be guessed or recovered
based on the context, we may remove the word from the text so
as to enhance the compression efficiency.

Soure code of this work available at https://github.com/lmx666-
gif/semantic-compression-via-masking. Thanks to XYZ agency for funding.

Now the key question to ask is: how do we decide which
words to mask? For the crossword case, the missing letters
in intersection grids are often easier to guess. Similarly, if a
word appears in many sentences, then it is easier to recover, e.g.,
the stop words like “is” and “to” are often of this type. Since
these words are easy to recover after masking, we claim that
they are semantically minor. In practice, we propose to use the
Sentence—Bidirectional Encoder Representation (BERT) [2] to
measure the semantic importance, and use the Transformer [3]
to recover the masked words via word embedding.

The efforts in semantic data compression date back to [4]
in the 1990s where every word is replaced with a shorter syn-
onym from a thesaurus. Another early attempt in [5] focuses
on the Extensible Markup Language (XML) type of file. Its
primary idea is to classify the XML data according to their im-
portance, and then reduce the precision of those data that can
tolerate higher losses. Moreover, [6] proposes the so-called se-
mantic entropy to quantify the limit of semantic compression. A
line of works [7, 8] exploit the connections between the facts in
the knowledge basis to reduce the semantic redundancy in text.
A recent popular work [9] suggests a semantic approach to the
joint source and channel coding, while a more recent work [10]
suggests that source coding is handled by the semantic approach
but the channel coding is still handled by the conventional ap-
proach such as LDPC. Differing from the existing works [9,10]
that both use the BERT [11] to measure the semantic loss, the
present work proposes to use the sentence-BERT [2], which is
capable of extracting more pertinent information from context
than the BERT.

2. SYSTEM MODEL

Consider an English text denoted by T that comprises a total of
M sentences:

T = (S1, S2, . . . , SM), (1)

where Si is the ith sentence, i = 1, . . . ,M . These sentences
may vary in length. For data compression, we need to convert
T to a bit string x by the encoder f(·) as a

x = f(T) ∈ {0, 1}∗. (2)

https://github.com/lmx666-gif/semantic-compression-via-masking
https://github.com/lmx666-gif/semantic-compression-via-masking

Conversely, the decoder g(·) aims to recover T from x as

T̂ = g(x). (3)

Moreover, denoting by Ŝi the ith recovered sentence, we can
write the decoded text as

T̂ = (Ŝ1, Ŝ2, . . . , ŜM). (4)

Let δ(T, T̂) ≥ 0 be the distortion cost it incurs for representing
the ground truth T by the decoded text T̂ . We seek the optimal
encoder-and-decoder pair (f, g) that minimizes the length of x,
len(x), under the distortion constraint ϵ ≥ 0, i.e.,

minimize
f(·), g(·)

E[len(x)] (5a)

subject to δ(T, T̂) ≤ ϵ, (5b)

where the expectation of len(x) is taken over all the possible
texts to compress.

It remains to specify the distortion function δ(T, T̂). In the
classical rate-distortion theory, T and T̂ are often compared
symbol by symbol; the symbol in English text is either a letter
or a punctuation mark. Given the jth symbol ℓj from T and the
jth symbol ℓ̂j from T̂ , the traditional method computes the sym-
bol distortion d(ℓj , ℓ̂j), e.g., Hamming distortion d(ℓj , ℓ̂j) = 0

if ℓj = ℓ̂j and d(ℓj , ℓ̂j) = 1 otherwise. Then the overall text
distortion δ(T, T̂) amounts to the sum of the symbol distortions
d(ℓj , ℓ̂j) for all j. But the above distortion function can merely
capture the symbol statistics rather than the overall context.

In contrast, this work proposes to evaluate the distortion sen-
tence by sentence. Consider a pair of sentences Si and Ŝi. First,
convert Si and Ŝi to two 384 × 1 vectors µi and µ̂i, respec-
tively, by the sentence-BERT [2]. Then, in order to quantify
how well Ŝi represents Si, we use the cosine distance between
their sentence-BERT vectors µi and µ̂i:

λ(Si, Ŝi) = 1− µ⊤
i µ̂i

∥µi∥2 × ∥µ̂i∥2
, (6)

where µ⊤
i µ̂i

∥µi∥2×∥µ̂i∥2
is also known as 1-BERT similarity. We fur-

ther sum up λ(Si, Ŝi) to obtain the semantic loss of the overall
text as

δ(T, T̂) =

M∑
i=1

αiλ(Si, Ŝi), (7)

where the weight αi > 0 reflects the semantic importance of Si

in terms of the overall text T . For instance, We may let αi be
the number of words in Si for the belief that a longer sentence
typically conveys more meaning.

3. PROPOSED MASKING SCHEME

3.1. Semantic Encoding

Assume that the sentence Si contains Ni words. With the nth
word denoted by Win, the sentence Si can be written as

Si = (Wi1,Wi2, . . . ,WiNi
). (8)

Context

Masking LZ Decoding Transformer
Encoder

Transformer
Decoder

Demasking
LZ Encoding

Compressor Decompressor

Fig. 1. Paradigm of the masking-based semantic compression.

Algorithm 1 Semantic Data Compressor
Input: Text T and masking ratio ρ ∈ [0, 1)

1: Initialization: Word list K = ∅
2: for each sentence Si in T do
3: Compute µi = SentenceBERT(Si)
4: for each word Win in Si do
5: Update K = K ∪ {Win}
6: Compute µ̂i = SentenceBERT(S−

in)
7: Compute σin = 1− µ⊤

i µ̂i/(∥µi∥2 · ∥µ̂i∥2)
8: end for
9: Normalize each σin as σ̄in according to (10)

10: end for
11: for each word Vk ∈ K do
12: compute ηk according to (12)
13: end for
14: Sort the words in K in the ascending order of ηk
15: Replace the top ⌊ρ|K|⌋ words with “#” throughout T
16: Convert the masked text to the bit string x by LZ

Output: Bit string x

For each n = 1, . . . , Ni, we mask the current Win in sentence
Si, and denote by S−

in the resulting new sentence. The corre-
sponding semantic loss is

σin = λ(Si, S
−
in). (9)

After obtaining all the {σin, ∀n} for Si, we further normalize
these semantic loss:

σ̄in =
σin∑Ni

n′=1 σin′
. (10)

Intuitively, σ̄in indicates the portion of the overall meaning of
Si carried by the word Win alone. The above procedure is re-
peated for every sentence in the text.

Next, we collect all the words that have appeared in the text:

K =
{
V1, V2 . . . , V|K|

}
. (11)

For each distinct word Vk ∈ K, denote by Qik ⊆ {1, . . . , Ni}
the set of position(s) of Vk in the sentence Si. We then quantify
the semantic importance of Vk as

ηk =
1∑M

i=1 |Qik|
×

M∑
i=1

(
αi

∑
n∈Qik

σ̄in

)
. (12)

Given the masking ratio 0 ≤ ρ < 1, we mask the top ⌊ρ|K|⌋
words with the least values ηk throughout the text. (In prac-
tice, we may replace the masked word with a special character

��� # ����

Masked Sentence

��
� � ���

� ,���

� ,⋯, ����

�

Recovered Sentence

�� � ����,���⋯,����
�

��� ��� ��� ����

⋯

⋯

Fig. 2. Flowchart of the semantic data decompressor.

Algorithm 2 Semantic Data Decompressor
Input: Bit string x

1: Convert x to the masked raw text T ′ by LZ decoding
2: for each raw sentence S′

i in T ′ do
3: Convert S′

i to multiple one-hot embedding vectors
4: Incorporate positional encoding
5: Extract context features by Transformer encoder
6: Recover the masked words by Transformer decoder
7: end for
8: Assemble the text T̂ = (Ŝ1, Ŝ2, . . . , ŜM)

Output: Recovered text T̂

such as “#”.) Afterwards, we convert the masked text to the bit
string by the standard method, e.g., Lempel-Ziv(LZ) code [12].
Algorithm 1 summarizes the above steps.

3.2. Semantic Decoding

We now consider recovering the text from the compressed
bit string x. First, we convert x to the word string T ′ with
the masking character # by means of LZ [12]—which is a
state-of-the-art lossless compressor based on deep neural net-
work. The resulting T ′ comprises a sequence of raw sentences
(S′

1, S
′
2, . . . , S

′
M). Notice that each S′

i is the counterpart of
the masked Si. We propose a Transformer-based [3] network
shown in Fig. 2 to demask S′

i (i.e., recover word from each #).
Specifically, each raw sentence S′

i is decomposed into words
(including the masking character #) and is fed to the tokenizer to
yield a one-hot embedding vector whose dimension equals the
dictionary size. Zero padding is used if the sentence has fewer
than 30 words. Subsequently, the one-hot embedding vector is
transformed into word embedding of dimension d = 128, and

then the following Positional Encoding (PE) sequence is added
to word embedding on a per-entry basis:

PEpos,z =

sin
(
10−

4z
d pos

)
if z ≡ 0 mod 2

cos
(
10−

4(z−1)
d pos

)
if z ≡ 1 mod 2.

, (13)

for z = 1, 2, . . . , d, where pos is the position index of each
word within the current sentence S′

i.
Each raw sentence S′

i, with its words all cast to the PE-
added embedding vectors, is now fed to the Transformer en-
coder. The multi-head attention mechanism of the Transformer
encoder is desirable in our case in that it captures the interac-
tion between the target word and its neighboring words. As
a result, the features extracted from each word can be recog-
nized in three respects: the positional encoding, the pre-textual
word embedding, and the post-textual word embedding, all of
which enable the subsequent Transformer decoder to recover
the masked words in S′

i. The above Transformer network is
tuned based on the training data set in an end-to-end fashion to
minimize the cross-entropy

CE(Si, Ŝi) = −
∑
(n,k)

qn(Vk) log2 pn(Vk)

−
∑
(n,k)

(1− qn(Vk)) log2(1− pn(Vk)), (14)

where qn(Vk) ∈ {0, 1} is the ground-truth label such that
qn(Vk) = 1 if Win = Vk and qn(Vk) = 0 otherwise, while
pn(Win = Vk) ∈ [0, 1] is the soft decision that reflects the
likelihood of the nth word being Vk. After the Transformer has
been trained, we decode the bit string as stated in Algorithm 2.

4. EXPERIMENTS

The sample text used in our experiments is taken from the 2005
proceedings (English version) of the European Parliament [13].
It is composed of around 80,000 sentences with over 1.5 million
words in total. The size of each sentence ranges from 4 words
to 30 words. The data set is divided into two groups: 90% for
training and the rest 10% for testing. Our Transformer model
is trained for 120 epochs until it fully converges. We use the
Adam optimizer [14] with the parameter setting 1× 10−4, β =
(0.9, 0.98), ϵ = 1× 10−8, and a weight decay of 5× 10−4.

We compare the proposed algorithm with a recently pro-
posed semantic data compression method [10]. Moreover, we
take the frequency-based masking scheme as a naive bench-
mark: those words with the highest frequencies are masked.

We first apply the proposed algorithm to a sample paragraph
with the masking ratio ρ = 0.674, as shown in Fig. 3 and Fig. 4.
Observe that a large portion of masking is applied to the stop
words like “of”, “is”, “to”, “the” etc. It is worth remarking that
the words and phrases closely related to the context, such as
“affairs”, “ladies and gentlemen”, and “proposed”, are masked
as well. Observe also from Fig. 4 that the recovery is fairly suc-
cessful since most missing words can be recovered. But there

The next item is the continuation of the joint
debate on agenda. Mr president, commissioners,
ladies and gentlemen, I would like to focus on the
European social fund. I am voting in favour of the
amendments proposed by the Trakatelli’s report on
the regulation of leaf tobacco. The next is the
report from Sir Jack Stewart Clark on behalf of
the committee about civil liberties and internal
affairs on the draft joint actions.

Fig. 3. A paragraph from the 2005 proceedings of the European
Parliament [13]. The bold words are masked by Algorithm 1.

The next item is the continuation of the joint
debate on agenda. Mr president, commissioners,
ladies and gentlemen, I would like to say that the
European social fund. I am voting in favour of the
amendments submitted by the Trakatelli’s report on
the regulation of leaf tobacco. The next is the
report from Mr Jack Stewart Clark farage on behalf
of committee about civil liberties and internal
affairs on the draft general actions.

Fig. 4. Demasking of the above paragraph by Algorithm 2. The
recovered words are in bold font; the discrepancies are in red.

Fig. 5. The semantic similarity performance of the different
lossy compression methods at the same compression rate.

are still some discrepancies, some of which even cause seman-
tic misunderstanding, e.g., “Sir” is replaced with “Mr”, but the
former actually indicates an honorific title rather than a regular
title before a man’s surname.

Fig. 5 shows the tradeoff between semantic loss and com-
pression efficiency. Notice that the proposed method Crossword
yields much lower semantic loss than the benchmark methods.
It is worth mentioning that the lossless compressor Lempel-Ziv
code requires 16.7 bits/word in this case. Thus, if we can tol-
erate a semantic loss of 0.1, the compression efficiency can be
almost doubled by using Crossword.

Thus far, the training and validation of the Crossword
method are both based on the dataset Euro of the European
Parliament [13]. What if they are based on different datasets?
We now test the generalizability of the Crossword method in
Fig. 6. A new dataset Internet Movie Database (IMDb) [15] is

Fig. 6. The generalizability performance of the proposed
method Crossword with ρ = 0.61. Denote by “A → B” the
case with the training dataset A and the test dataset B.

now added to our experiments. With the two datasets Euro and
IMDb, we consider all possible combinations for the training
and test datasets. As shown in the upper part of Fig. 6, the
proposed method yields lower semantic loss when the same
dataset is used for training and test. But even when distinct
datasets are used for training and test, the semantic loss does
not increase too much. The reason is that even though IMDb
and Euro have quite different knowledge backgrounds, the stop
words are common, so the words like “of” and “is” can still
be masked successfully; this is consistent with the fact in the
lower part of the figure that all four combinations yield the
similar compression rates. For example, with the Crossword
trained based on IMDb, the semantic loss increases by only
around 10% if the test dataset is switched to Euro; this 10%
difference is due to the word masking related to the background
knowledge.

5. CONCLUSION

This work proposes a semantic approach to data compression
for English text as inspired by the puzzle crossword. The main
idea is to mask those semantically minor words. The sentence-
BERT is used to evaluate the semantic importance, which can
sense and capture the context better than the BERT as used in
the existing works [9, 10]. Moreover, we propose to use the
Transformer to recover the masked words at the decompressor
side. Experiments show the remarkable advantage of the pro-
posed method over the benchmark methods in enhancing com-
pression efficiency as well as preserving the meaning of the
overall text.

6. REFERENCES

[1] C. E. Shannon, “A mathematical theory of communica-
tion,” Bell Syst. Tech. J., vol. 27, no. 3, pp. 379–423, Mar,
1948.

[2] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence
embeddings using Siamese BERT-networks,” 2019, [On-
line]. Available: https://arxiv.org/abs/1908.10084.

[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is
all you need,” in Neural Info. Process. Syst. (NeurIPS),
vol. 30, 2017.

[4] I. H. Witten, T. C. Bell, A. Moffat, C. G. Nevill-Manning,
T. C. Smith, and H. Thimbleby, “Semantic and generative
models for lossy text compression,” Comput. J., vol. 37,
no. 2, pp. 83–87, Feb, 1994.

[5] V. P. B. ISI-CNR, “Semantic lossy compression of
XML data,” 2001, [Online]. Available: http://CEUR-
WS.org/Vol-45/05-cannataro.pdf.

[6] P. Basu, J. Bao, M. Dean, and J. Hendler, “Preserving
quality of information by using semantic relationships,”
Pervasive Mobile Comput., vol. 11, pp. 188–202, April,
2014.

[7] R. Wang, D. Sun, R. Wong, R. Ranjan, and A. Y. Zomaya,
“SInC: Semantic approach and enhancement for relational
data compression,” Knowledge-Based Systems, vol. 258,
pp. 110 001–110 001, Dec, 2022.

[8] J. Bao, P. Basu, M. Dean, C. Partridge, A. Swami, W. Le-
land, and J. A. Hendler, “Towards a theory of semantic
communication,” in IEEE Netw. Sci. Workshop, Jun. 2011,
pp. 110–117.

[9] Z. Qin, X. Tao, J. Lu, and G. Y. Li, “Semantic communi-
cations: Principles and challenges,” 2021, [Online]. Avail-
able: https://arxiv.org/abs/2201.01389.

[10] K. Niu, J. Dai, S. Yao, S. Wang, Z. Si, X. Qin, and
P. Zhang, “A paradigm shift toward semantic communica-
tions,” IEEE Commun. Mag., vol. 60, no. 11, pp. 113–119,
Nov, 2022.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“Bert: Pre-training of deep bidirectional transformers
for language understanding,” 2018, [Online]. Available:
https://arxiv.org/abs/1810.04805.

[12] A. Lempel and J. Ziv, “On the complexity of finite se-
quences,” IEEE Trans. Inf. Theory, vol. 22, no. 1, pp. 75–
81, Jan, 1976.

[13] P. Koehn, “Europarl: A parallel corpus for statistical ma-
chine translation,” in Proc. MT Summit, Sep, 2005, pp.
79–86.

[14] D. P. Kingma and J. Ba, “Adam: A method for
stochastic optimization,” 2014, [Online]. Available:
https://arxiv.org/abs/1412.6980.

[15] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng,
and C. Potts, “Learning word vectors for sentiment analy-
sis,” in Proc. ACL, 2011, pp. 142–150.

	 Introduction
	 System Model
	 Proposed Masking Scheme
	 Semantic Encoding
	 Semantic Decoding

	 Experiments
	 Conclusion
	 References

