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ABSTRACT

Weighted minimum mean squared error (WMMSE) and frac-
tional programming (FP) constitute two common approaches
to the weighted sum-rate maximization in communication
system design. One subtle issue with WMMSE and FP lies in
the tuning of a Lagrange multiplier for the power constraint
when it comes to the multi-antenna transmission. To obtain
the optimal Lagrange multiplier, we must repeatedly inverse
an M × M matrix, where M is the number of transmit an-
tennas, which incurs considerable complexity. To address the
above issue, this work explores the connection of WMMSE
and FP to minorization-maximization (MM), thereby modi-
fying the two methods to get rid of the Lagrange multiplier.
The proposed algorithm enables a parameter-free iterative
optimization of the beamforming vectors with the power con-
straint enforced automatically. Numerical results demonstrate
the faster convergence of the proposed beamforming method
as compared to the conventional WMMSE and FP methods.

Index Terms— Weighted sum-rate maximization, weighted
minimum mean squared error (WMMSE), fractional pro-
gramming (FP), minorization-maximization (MM).

1. INTRODUCTION

Weighted sum-rate (WSR) maximization plays a central role
in a wide variety of communication system design tasks [1],
a typical case of which is to find the optimal beamforming
vectors for the multi-antenna channels [2–4]. This problem
proves to be NP-hard [5, 6]; the state of the art is to attain
a stationary point solution via the weighted minimum mean
squared error (WMMSE) algorithm or fractional program-
ming (FP). This work shows that the computational efficiency
of WMMSE and FP can be significantly improved by utilizing
their connection to minorization-maximization (MM) [7].

As two common approaches to the WSR beamforming
problem, WMMSE and FP are driven by completely di-
verse motivations. WMMSE stems from a well-known result
in the signal processing field: maximizing the signal-to-
interference-plus-noise ratio (SINR) is equivalent to mini-
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mizing the mean squared error (MSE) of the received signal.
The idea of casting the WSR maximization problem into the
weighted sum MSE minimization problem to facilitate the
problem solving is first proposed in [2] for the multiple-input
single-out (MISO) channels and then is extended by [3] to
the multiple-input multiple-output (MIMO) case. A recent
progress in WMMSE aims to reduce the computational com-
plexity by using the range space of channels under some
certain conditions [8]. In contrast, the FP method works
towards a mathematical goal—it reformulates a fractional
optimization problem with one or more ratios so as to decou-
ple every ratio term. The classic methods, i.e., Dinkelbach’s
algorithm and Charnes-Cooper algorithm [9], have achieved
this goal for a single ratio. Thus, the use of the classic FP
techniques in communication system design is typically re-
stricted to the single-ratio scenario such as the efficiency
maximization [10, 11], but the WSR problem does not fall
in this category. In [4], a multi-ratio FP technique called the
quadratic transform is developed to coordinate multiple links
(with multiple SINRs) in wireless networks. The transforms
in multi-ratio FP increase the dimension of the optimization
variable, i.e., leading to multi-block optimization problems
with introduced auxiliary variables. Then the beamforming
variable and some auxiliary variables are optimized in a block
coordinate ascent (BCA) fashion [12]. The capability of deal-
ing with multiple ratios enables the extensive applications of
FP in communication system design, e.g., [13–16].

Nevertheless, it turns out that WMMSE and FP are closely
related to each other, and are both akin to MM. As shown
in [17, 18], WMMSE can be recognized as a special case
of FP [4], and moreover, FP can be recognized as a special
case of the more flexible MM method. One main result of
this paper is to establish the above connection using a novel
constructive argument, which is inspired by the MM algo-
rithms for WSR maximization proposed in [19, 20]. In re-
turn, the MM interpretation leads us to a novel way of en-
hancing the efficiency of WMMSE and FP. Actually, a subtle
issue with WMMSE and FP is to decide a Lagrange multi-
plier for each transmit beamformer—which is introduced to
account for the transmit power constraint. According to the
conventional WMMSE and FP, we must repeatedly inverse an
M×M matrix in order to obtain the optimal Lagrange multi-



plier, where M is the number of transmit antennas. There are
some learning-based methods designed to avoid the matrix in-
version [21], while no optimization-based approach has been
presented to achieve such a goal. The other main result of
the paper is to modify the existing WMMSE and FP methods
to get rid of the Lagrange multiplier by leveraging their con-
nections to MM [20]. Like WMMSE and FP, the proposed
method still optimizes the beamforming variable and some
auxiliary variables in a BCA fashion, only that the tuning of
the Lagrange multiplier for the power constraint is no longer
required. The algorithm yields a provable convergence to a
feasible stationary point satisfying the constraint.

The rest of the paper is organized as follows. Section 2
describes the WSR beamforming problem. For ease of nota-
tion, we focus on a single cell with the MISO channels, but
our results can be readily extended to the fully general multi-
cell MIMO case. Section 3 examines the connection of FP
and WMMSE to MM. Section 4 shows the proposed beam-
forming algorithm. Section 5 presents the simulation results.
Finally, Section 6 concludes the entire paper.

2. WSR MAXIMIZATION IN MISO SYSTEMS

Consider a single-cell MISO downlink network with K user
terminals, where the base station (BS) has M antennas and
each user terminal has one antenna. Let hk ∈ C1×M be the
channel from the BS to the kth user terminal. Let w ∈ CM be
the transmit beamforming vector for the downlink transmis-
sion to the kth user terminal. We write W = [w1, . . . ,wK ]
as a shorthand for the beamforming variables. Thus, the SINR
of each user k can be computed as

SINRk =

∣∣hH
k wk

∣∣2∑K
j=1,j ̸=k

∣∣hH
k wj

∣∣2 + σ2
k

, (1)

where σ2 is the additive background noise power. In partic-
ular, a sum power constraint

∑K
k=1 ∥wk∥2 ≤ P is posed

at the transmitter side. We use W to denote the feasi-
ble set of W under the power constraint P , i.e., W ={
W :

∑K
k=1 ∥wk∥2 ≤ P

}
. Moreover, a nonnegative rate

weight αk ≥ 0 is assigned to each user k to reflect its prior-
ity. The WSR maximization problem across the K downlink
users can now be formulated as

maximize
W∈W

fWSR (W) ≜
K∑

k=1

αk log (1 + SINRk) . (2)

3. MM INTERPRETATION OF WMMSE AND FP

3.1. Review of WMMSE and FP

Because WMMSE is a special case of FP as shown in [17,
Section VI-A], it suffices to show how FP works. The FP
method [4] is based on the following two results:

Theorem 1 ( [17]). Given ratios Ak(x)
Bk(x)

with Ak(x) ≥ 0 and
Bk(x) > 0 for k = 1, . . . ,K, the following problem:

maximize
x∈X

K∑
k=1

αk log

(
1 +

Ak(x)

Bk(x)

)
(3)

is equivalent to

maximize
x∈X ,γ

K∑
k=1

ωk

(
log (1+γk)−γk+

(1+γk)Ak(x)

Ak(x)+Bk(x)

)
, (4)

in the sense that they attain identical optimal solution, where
γ = [γ1, . . . , γK ].

Theorem 2 ( [4]). Given nondecreasing functions fk and
ratios |Ak(x)|2

Bk(x)
with Ak(x) ∈ C and Bk(x) > 0 for k =

1, . . . ,K, the following problem:

maximize
x∈X

K∑
k=1

fk

(
|Ak(x)|2

Bk(x)

)
(5)

is equivalent to

maximize
x∈X ,y

K∑
k=1

fk

(
2Re (y∗kAk(x))− |yk|2 Bk(x)

)
, (6)

in the sense that they attain identical optimal solution, where
y = [y1, . . . , yK ].

Applying the Lagrangian dual transform in Theorem 1 to
Prob. (2), we reformulate the problem as

maximize
W∈W,γ

K∑
k=1

αk

(
log(1 + γk)− γk

+
(1 + γk)|hH

k wk|2∑K
j=1 |hH

k wj |2 + σ2
k

)
. (7)

Prob. (7) is convex in γ when the other variable is held fixed.
Given W1, each γk, k = 1, . . . ,K, can be optimally deter-
mined as γ⋆

k = SINRk. The ratios in Prob. (7) can be further
decoupled using the quadratic transform in Theorem 2, and
thus we arrive at a further reformulation:

maximize
W∈W,γ,y

K∑
k=1

(
2Re

(
y∗k
√
αk (1 + γk)h

H
k wk

)
− |yk|2 ·

(
σ2
k +

K∑
j=1

∣∣hH
k wj

∣∣2)+ ωk

(
log (1 + γk)− γk

))
. (8)

Thus, aside from the original beamforming variable W, two
auxiliary variables γ and y are introduced by the Lagrangian
dual transform and the quadratic transform, respectively. The
FP method is to optimize the above three variables iteratively,
as shown below:

1We use x denotes the given variables (e.g., wk) or computed with given
variables (e.g., SINRk) with most recently updated value.



FP Approach to WSR Beamforming

(Step 1) γ⋆
k = SINRk,

(Step 2) y⋆
k =

√
ωk

(
1 + γ

k

)
hH
k wk∑K

j=1

∣∣hH
k wj

∣∣2 + σ2
k

,

(Step 3) w⋆
k =

( K∑
j=1

|y
j
|2hjh

H
j + µ⋆I

)†√
ωk(1 + γ

k
)y

k
hk.

Go back to Step 1 till convergence

We remark that the quadratic transform can be applied in
different ways to Prob. (7). For instance, we could have ex-
cluded the term αk(1+γk) from the ratio term by treating it as
a weight of the ratio, then would arrive at a different problem:

maximize
W∈W,γ,y

K∑
k=1

αk (1 + γk)
(
2Re

(
y∗kh

H
k wk

)
− |yk|2 ·

(
σ2
k +

K∑
j=1

∣∣hH
k wj

∣∣2)+ ωk

(
log (1 + γk)− γk

))
. (9)

As shown in [17], optimizing the three variables W, γ, and
y iteratively gives rise to the WMMSE algorithm. Thus,
WMMSE can be viewed as a special case of FP. The pros and
cons of the different patterns of ratio decoupling has been
discussed in [17].

Another remark we wish to make is about the Lagrange
multiplier µ nested in the update of wk at Step 3 of the above
algorithm. As shown in [17], µ accounts for the sum power
constraint, whose optimal value can be determined according
to the complementary slackness

µ⋆ = min
{
µ ≥ 0 :

K∑
k=1

∥wk (µ)∥22 ≤ P
}
. (10)

However, the search for the optimal µ⋆ entails computing the

M×M matrix pseudo-inverse
(∑K

j=1 |yj |
2hjh

H
j +µ⋆I

)†
re-

peatedly with respect to different possible values of µ⋆, which
can be time costly in practice. Both WMMSE and FP are
faced with this issue; this work aims to get rid of the Lagrange
multiplier µ by MM while still satisfying the sum power con-
straint on W. Before proceeding to this main result, we first
explore the connection between FP and MM.

3.2. Connection to MM
Since WMMSE is a special case of FP as shown in the previ-
ous subsection, it suffices to consider how FP is connected to
MM. In contrast to [17] that links FP to MM in a reverse en-
gineering fashion, this work provides a constructive analysis.
We begin with two lemmas:

Lemma 3 ( [20]). The log(z) with z ∈ R+ is minorized at z
as follows:

log(z) ≥ log(z) + 1− z

z
.

Lemma 4 ( [20]). Given a nondecreasing function f , f
( |z1|2

z2

)
with z1 ∈ C and z2 ∈ R+ is minorized at (z1, z2) as follows:

f
( |z1|2

z2

)
≥ f

(
2Re

(z1∗
z2

z1
)
−

|z1|2

z22
z2

)
.

Based on Lemmas 3 and 4, an MM method is proposed
for WSR maximization in both MISO and MIMO cases in
[20]. Then, we show that the Lagrangian dual transform and
the quadratic transform boil down to constructing surrogate
functions for MM, as stated in the following two theorems.

Theorem 5. Consider the Lagrangian dual transform in The-
orem 1, if we consider the optimal γ as a function of x and
substitute them into the objective in Eq. (4), then the resulting
function is a surrogate function of the objective in Prob. (3)
constructed based on Lemma 3.

Proof. Given x, γk can be optimally determined as γ⋆
k =

Ak(x)
Bk(x)

. By substituting γ⋆ to the objective in (4), we have

g (x,γ⋆) =

K∑
k=1

ωk

(
log

(
1 +

Ak(x)

Bk(x)

)
+ 1−

1 + Ak(x)
Bk(x)

1 + Ak(x)
Bk(x)

)
.

It can be readily verified that g (x,γ⋆) is a minorizing func-
tion of the objective function in (3) at x, which can be con-
structed based on Lemma 3 by taking z = 1 + Ak(x)

Bk(x)
.

Theorem 6. Consider the quadratic transform in Theorem
2, if we consider the optimal y as a function of x and sub-
stitute them into the objective in Eq. (6), then the resulting
function is a surrogate function of the objective in Prob. (5)
constructed based on Lemma 4.

Proof. With x being held fixed, yk can be optimally deter-
mined as y⋆k = Ak(x)

Bk(x)
, k = 1, . . . ,K. By substituting y⋆ to

the objective in (6), we have

g (x,y⋆)=
K∑

k=1

fk

(
2Re

(A∗
k(x)

Bk(x)
Ak(x)

)
−
∣∣∣Ak(x)

Bk(x)

∣∣∣2Bk(x)

)
.

It can be verified that g (x,y⋆) is a minorizing function of the
objective in Prob. (5) at x, which can be constructed based on
Lemma 4 with z1 = Ak(x) and z2 = Bk(x).

The above results demonstrate that the update of auxiliary
variables in FP can be recognized as generating the surrogate
function in MM based on Lemma 3 and Lemma 4.

4. PROPOSED BEAMFORMING METHOD

The main issue with the conventional FP method is that it is
inefficient to repeatedly compute the matrix pseudo-inverse
in order to obtain the optimal µ. We now propose substitut-
ing this matrix with a diagonal matrix for which the pseudo-
inverse can be immediately obtained. The main idea is to use
a novel MM technique as specified in the following lemma.



maximize
W∈W,γ,y,T∈W

K∑
k=1

(
2Re

(
y∗k
√
ωk(1 + γk)h

H
k wk

)
− |yk|2σ2

k − |yk|2
K∑
j=1

(
wH

k ∥hj∥22 wk

+ 2Re
(
wH

k (hjh
H
j − ∥hj∥22 I)tk

)
+ tHk (∥hj∥22 I− hjh

H
j )tk

)
+ ωk (log (1 + γk)− γk)

)
.

(11)

Lemma 7 ( [20]). Let L,M ∈ Hn such that M ⪰ L. The
function xHLx with x ∈ Cn is majorized at x as follows:

xHLx ≤ xHMx+ 2Re(xH(L−M)x) + xH(M− L)x.

In Section 3.2, we have shown that the updates of auxil-
iary variables in FP can be seen as procedures for generating
surrogate functions. From an alternative view, these trans-
forms are specifications for parameterizing the intermediate
constants in MM. With such understanding, we introduce a
novel equivalent transform based on reparameterizing x in
Lemma 7 as an auxiliary variable. We point out that with the
close relationship between the surrogate function construction
and the equivalent transform, new transforms can be derived.

Theorem 8. Let L,M ∈ Hn such that M ⪰ L. Problem

minimize
x∈X

xHLx

is equivalent to

minimize
x∈X ,t∈X

xHMx+ 2Re(xH(L−M)t) + tH(M− L)t,

in the sense that they attain identical optimal solution.

Proof. The auxiliary variable t can be optimally determined
by setting the derivative of the transformed objective w.r.t. t
to 0, by substituting which back to the transformed objective,
we can get xHLx.

We now apply Theorem 8 to Prob. (8) to further recast
the problem into (11) displayed at the top of the page where
T = [t1, . . . , tK ]. Denoting

qk =
y
k

√
ωk(1 + γ

k
)hk −

∑K
j=1 |yj |

2(hjh
H
j − ∥hj∥22 I)tk∑K

j=1 |yj |
2 ∥hj∥22

,

the update rule of a novel FP+ method is given as follows:

FP+ Approach to WSR Beamforming

(Step 1) γ⋆
k = SINRk,

(Step 2) y⋆
k =

√
ωk

(
1 + γ

k

)
hH
k wk∑K

j=1

∣∣hH
k wj

∣∣2 + σ2
k

,

(Step 3) t⋆k = wk,

(Step 4) w⋆
k = qk min

{√ P∑K
k=1 ∥qk∥22

, 1
}
.

Go back to Step 1 till convergence

Observe that W can now be efficiently determined with-
out searching for the optimal µ.
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Fig. 1. Performance of algorithms for WSR maximization.

5. EXPERIMENTS

In this section, we provide numerical experiments to corrobo-
rate our theoretical results, which are performed in MATLAB
on a personal computer with a 3.3 GHz Intel Xeon W CPU.
Under a three-dimensional Cartesian coordinate system, we
consider a multi-user MISO system, where a BS located at
(0, 0, 10)m communicates with K users that are randomly
distributed in a circle centered at (d, 30, 0)m with radius of
10m. We adopt the Rayleigh fading model hk = hR

k

√
κ(d),

where hR
k ∼ CN (0, 1) and κ(d) = T0(d)

−ϱ with T0 =
−30dB and ϱ = 3.67. We consider the noise power spectrum
density of −169dBm/Hz and the transmission bandwidth of
240kHz. Besides, we set P = 0dBm d = 200m, K = 4,
M = 4, and σ2

1 = · · · = σ2
K = 1. All the simulation curves

are averaged over 100 independent channel realizations.
We compare FP and FP+ in terms of computation time

are depicted in Fig. 1. Observe that although FP+ need more
iterations to converge, they have faster convergence in terms
of CPU times. This result suggests that FP+ requires lower
per-iteration computational complexity.

6. CONCLUSION

This paper seeks an improved version of the conventional
WMMSE and FP without requiring the complexity of tuning
the Lagrange multiplier. The proposed improvement is based
on an interpretation of the conventional methods as the MM
algorithm. We propose to further introduce a surrogate func-
tion bounding to make W much easier to update in the pres-
ence of power constraint. Our numerical result shows that the
proposed method FP+ yields much faster convergence than
the conventional FP.
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