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ABSTRACT

The beamforming problem of intelligent reflecting surface
(IRS) has been extensively considered from an optimization
perspective assuming that channel state information (CSI) is
available. However, the reality is that the existing prototypes
seldom follow this model-based approach because channel
estimation is technically difficult and costly for the network
protocols and hardware to date. A recent trend is to per-
form beamforming blindly without channel knowledge, e.g.,
the so-called CSM method [1, 2]. This work looks at blind
beamforming from a reinforcement learning point of view.
We first show that CSM boils down to a special case of the
greedy algorithm in the reinforcement learning context. We
analyze the resulting cumulative regret, and further propose
an upper approximation to facilitate the optimization of the
exploration probability. Moreover, we show that a gradient
sampling scheme can improve the efficiency of reinforcement
learning as compared to the uniform sampling scheme used
in CSM. Finally, we validate the performance advantage of
the proposed methods in a prototype system.

1. INTRODUCTION

A major use of intelligent reflecting surface (IRS) is to coor-
dinate phase shifts across its reflective elements (REs), i.e.,
passive beamforming, in order to maximize the received sig-
nal power at the target position. The existing approaches to
passive beamforming typically entail channel state informa-
tion (CSI), whereas two recent works [1, 2] suggest optimiz-
ing phase shifts blindly without channel acquisition. We fur-
ther develop this new idea by means of reinforcement learn-
ing:
• We show that blind beamforming [1, 2] is equivalent to an
ϵ-greedy algorithm for the multi-armed bandit problem.

• We improve the efficiency of blind beamforming by replac-
ing uniform samples with gradient samples.

In the literature, passive beamforming has been con-
sidered extensively from a model-based optimization per-
spective. When CSI is available, the passive beamforming
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problem of IRS can be addressed by the standard meth-
ods, e.g., semidefinite relaxation (SDR) [3–7] and fractional
programming (FP) [8–13]. But estimating channels for an
IRS-assisted network is by no means trivial; a variety of so-
phisticated strategies have been proposed. In [14–16], the
channel estimation is conducted assuming that each RE can
be turned off, i.e., every OFF RE absorbs all signals falling
on it. Another line of works [17–19] require introducing ex-
tra pilots according to the discrete Fourier transform (DFT)
matrix. Assuming a certain type of sparse model for chan-
nels, [20] suggests a two-step method that first estimates the
common column of AoD steering vectors and then solves the
sparse matrix recovery problem. In particular, we mention
that all the above methods entail full cooperation between the
IRS and the base station.

However, the existing works [1, 2, 21, 22] that pursue
prototype implementations of IRS rarely consider channel
estimation, for the following three reasons. First, each re-
flected channel alone can be easily overwhelmed by the much
stronger direct channel, and hence is difficult to measure.
Second, the existing channel estimation methods for IRS
are incompatible with the current networking protocols and
hardware. Third, channel estimation requires computing the
inverse of a coefficient matrix whose size equals the number
of REs, so it becomes costly when dealing with a huge IRS.

The above issues can be completely resolved by the blind
beamforming method in [1,2]. Its main idea follows: Choose
phase shifts for all REs at random, then use the average per-
formance conditioned on a particular choice of phase shift
for the nth RE to characterize the goodness of this phase
shift decision, and finally choose phase shift for each RE n
to maximize the corresponding conditional average perfor-
mance. While [1, 2] give the statistical motivation behind
blind beamforming, this work shows that blind beamforming
can be interpreted as an ϵ-greedy algorithm [23] for solving
the multi-armed bandit problem in the reinforcement learning
field; the key step is to figure “cumulative regret” in our prob-
lem case. Following this line, we further use the gradient ban-
dit method [24] to improve the efficiency of blind beamform-
ing. Intuitively, rather than trying out new samples uniformly,
we propose trying out those more “promising” samples with
higher priorities so as to attain the optimum more quickly.



2. SYSTEM MODEL

Consider an IRS-assisted network in which the IRS comprises
N REs. Denote by h0 ∈ C the direct channel from the trans-
mitter to the receiver, hn,t ∈ C the channel from the trans-
mitter to RE n, and hn,r ∈ C the channel from RE n to the
receiver, for n = 1, . . . , N . The cascaded reflected channel
hn ∈ C of RE n is then given by hn = hn,r × hn,t. Assume
that the configuration of IRS can be updated on a per block
basis; let θtn ∈ [0, 2π) be the phase shift of RE n in block t.
Assume also that there are a total of T blocks and the chan-
nels are invariant throughout. In practice, the value of each
phase shift is restricted to a prescribed discrete set

ΦK = {0, ω, . . . , (K − 1)ω} with ω =
2π

K
, (1)

where the set size K ≥ 2. For the transmit signal power P
and the background noise power σ2, the SNR in block t can
be computed as a function of the corresponding phase shift
array θt = (θt1, . . . , θ

t
N ) as

SNR(θt) =
P
∣∣∣h0 +

∑N
n=1 hne

jθt
n

∣∣∣2
σ2

. (2)

Roughly speaking, our goal is to maximize SNR for all the T
blocks, which will be mathematically formalized in the con-
text of reinforcement learning. Finally, we emphasize that the
channels are unknown a priori.

3. A REINFORCEMENT LEARNING PERSPECTIVE

Should we alter the phase shifts when entering a new block?
This question becomes trivial if CSI is already known. Since
the channels are constant, we can just optimize the phase shift
for the first block and fix the solution thereafter. Regarding
the SNR maximization with CSI available, a common idea
[25–28] is to rotate every hn to the closest position to h0, i.e.,

θ⋆n = min
φ∈ΦK

∣∣∣∣Arg(hne
jφ

h0

)∣∣∣∣ , (3)

where Arg is the principal argument, namely the closest point
projection (CPP).

But the reality is that the CSI is unknown. It turns out
that the CPP solution can be recovered implicitly via random
sampling. Specifically, as proposed in [1,2], we try out a new
sample θt with each θtn drawn from ΦK i.i.d. and then record
the corresponding SNR(θt). After T0 samples, we compute
the conditional sample mean (CSM)

QT0
n (φ) =

∑T0

i=1 SNR(θi) · 1θi
n=φ∑T0

i=1 1θi
n=φ

(4)

for each φ ∈ ΦK . The blind beamforming method in [1, 2]
is to choose each phase shift θn to maximize the CSM, i.e.,
θn = arg max

φ∈ΦK

QT0
n (φ). The main result in [1, 2] follows:

Proposition 1 (Theorem 2 in [2]). As T0 → ∞, the solution
θn = arg max

φ∈ΦK

QT0
n (φ) tends to the CPP solution θ⋆n in (3).

But we cannot let T0 → ∞ since the total number of
blocks T is finite. A practical realization of blind beam-
forming in our case is to use T0 < T blocks to learn the
CSM values {QT0

n (φ)}, namely training. For the rest blocks,
we decide θt by the blind beamforming method [1, 2] with
the estimated {QT0

n (φ)}. Thus, the above blind beamform-
ing method can be recognized as a reinforcement learning
approach: explore new solutions for the first T0 blocks and
exploit the CSM so far for the remaining T − T0 blocks.

Furthermore, our problem can be thought of as a multi-
armed bandit problem with each possible solution θt ∈ ΦN

K

treated as an arm and the received SNR under θt is treated as
reward. Following this line, we can generalize the CSM blind
beamforming method [1,2] as an ϵ-greedy algorithm—which
is a classical approach to the multi-armed bandit problem:

θtn =

{
arg max

φ∈ΦK

Qt
n(φ) with probability 1− ϵ;

φ ∼ Uniform(ΦK) with probability ϵ.
(5)

In contrast to the CSM blind beamforming method in [1, 2]
that uses the first T0 blocks for exploration, we now decide
the use of each block t, exploration or exploitation, randomly.

The above interpretation further leads us to the definition
of regret as considered in the reinforcement learning field.
Since the CPP solution {θ⋆n} is the ultimate goal and it can
be obtained from QT0

n (φ) with T0 → ∞, we may consider
the following regret for the action θt in block t:

Gt =

N∑
n=1

(
Q∞

n (θ⋆n)−Q∞
n (θtn)

)
. (6)

It can be shown that Gt must be nonnegative and it equals 0 if
θtn = θ⋆n for every n. We seek the optimal {θt} to minimize
the expected cumulative regret over the T blocks:

minimize
{θt}

E

[
T∑

t=1

Gt

]
(7a)

subject to θtn ∈ ΦK , for each (n, t). (7b)

The ϵ-greedy algorithm in (5) constitutes the standard ap-
proach to the above problem in the reinforcement learning
field. But we raise two questions: What is the optimal value
of ϵ in (5)? Is there a better way of exploration than the uni-
form sampling?

4. PROPOSED BLIND BEAMFORMING METHODS

4.1. Parameter Tuning for ϵ-Greedy Algorithm

There is a trade-off in deciding the value of 0 < ϵ < 1. If
ϵ → 0, then the distortion between the real CSM Q∞

n (φ) and



the estimated CSM Qt
n(φ) can be large, so the resulting blind

beamforming solution is of low quality. Conversely, if ϵ → 1,
then most blocks are used for exploration and consequently
SNR should be fairly low for most of the time.

But optimizing ϵ directly in (7) is quite difficult. The fol-
lowing proposition provides an upper approximation of regret
that facilitates the optimization significantly.

Proposition 2. For the ϵ-greedy method, the expected value
of the cumulative regret over T blocks is upper bounded as

E

[
T∑

t=1

Gt

]
≤ ρTN

(
2K

T 4
+ ϵ

)
+2Nρ(1−ϵ)

√
2KT log T

ϵ

(8)
given any parameter 0 < ϵ < 1, where ρ =

∑N
n=0 |hn|2.

Proof. We begin with an exploitation block t. Defining an
event for each φ ∈ ΦK as

E(φ) =

{∣∣Qt
n(φ)−Q∞

n (φ)
∣∣ > ρ

√
2K log T

ϵ · T

}
, (9)

we show that

P

{∣∣Qt
n(φ)−Q∞

n (φ)
∣∣ ≤ ρ

√
2K log T

ϵ · T
, ∀φ ∈ ΦK

}
= 1− P

{⋃
φ∈ΦK

E(φ)
}

(a)

≥ 1−
∑

φ∈ΦK

P {E(φ)}

(b)

≥ 1− 2K

T 4
, (10)

where (a) follows by the union bound while (b) follows by
Hoeffding’s inequality. Moreover, the exploitation in (5)
guarantees that

Qt
n(θ

t
n) ≥ Qt

n(θ
⋆
n). (11)

Combining (10) and (11), we have

P

{
Q∞

n (θ⋆n)−Q∞
n (θtn) ≤ 2ρ

√
2K log T

ϵ · T

}
≥ 1− 2K

T 4
.

(12)
We now consider a general block t = 1, . . . , T . Clearly,

it always holds that

Q∞
n (θ⋆n)−Q∞

n (θtn) ≤ ρ. (13)

Thus, the expected value of Q∞
n (θ⋆n) − Q∞

n (θtn) can be
bounded from above as

E
[
Q∞

n (θ⋆n)−Q∞
n (θtn)

]
≤ ϵρ+ (1− ϵ)

((
1− 2K

T 4

)
2ρ

√
2K log T

ϵ · T
+

2K

T 4
ρ

)

≤ ϵρ+ 2(1− ϵ)ρ

√
2K log T

ϵ · T
+

2K

T 4
ρ. (14)

Summing both sides of (14) gives rise to (8).

We now use the upper approximation in (8) to replace the
objective function in (7). The resulting new problem turns
out to be convex in ϵ, so it suffices to solve the first-order
condition:

√
ϵ3T 3 − T (1 + ϵ)

√
2K log T = 0. (15)

Further, it can be shown that the above first-order equation
has only one real root

ϵ⋆ =

√
2K log T

9T
+

3

√
a+

√
a2 + b3 +

3

√
a−

√
a2 + b3,

(16)

where a =
(
1 + 4K log T

27T

)√
K log T

2T and b = 2K log T
9T .

4.2. Gradient Sampling

Our discussion thus far is based on uniform sampling—which
is questionable since it does not take the past performance
into account when choosing a new θt for exploration. For
instance, if using a particular phase shift φ ∈ ΦK for RE
n always results in poor performance, then it is advisable to
avoid this setting in future explorations.

The gradient bandit method [24] can address the above is-
sue, as stated in what follows. Introduce a numerical prefer-
ence variable Ht

n(φ) for each (n, φ) in block t to characterize
the “goodness” of setting θtn = φ. With the probabilities

P
{
θtn = φ

}
≜

eH
t
n(φ)∑

φ′∈ΦK
eH

t
n(φ

′)
≜ πt

n(φ), (17)

we make a soft decision for each θtn as

θtn = φ with probability πt
n(φ). (18)

It remains to specify how each Ht
n(φ) is obtained. By con-

vention, every H0
n(φ) is set to zero. Sequentially, each Ht

n(φ)
is computed based on the previous {Ht−1

n (·), πt−1
n (φ)} and

the past rewards as

Ht
n(θ

t
n) = Ht−1

n (θtn) + γδt(1− πt−1
n (θtn)), (19a)

Ht
n(φ) = Ht−1

n (φ)− γδtπ
t−1
n (φ), ∀φ ̸= θtn, (19b)

where γ > 0 is the learning rate and

δt = SNR(θt)− 1

t

t∑
i=1

SNR(θi) (20)

is the difference between the latest reward (which is the SNR
value) and the average reward so far. Note that we no longer
distinguish between exploration and exploitation when apply-
ing the gradient bandit method.



Fig. 1. Cumulative regret. Fig. 2. Average SNR boost. Fig. 3. Variance of SNR.

Fig. 4. Field test site.

5. FIELD TESTS

We conducted the field tests in an indoor scenario as shown
in Fig. 4. The transmit power is −5 dBm; the carrier fre-
quency is 2.6 GHz; antenna gain is 14.88 dBi. Our IRS has
294 REs with ΦK = {0, π}. Directional antennas are de-
ployed at both the transmitter and the receiver. We set the
learning rate γ = 0.05 for the gradient sampling method in
Section 4.2. Regarding the ϵ-greedy algorithm in Section 4.1,
we obtain ϵ⋆ for the different T values according to (16) as
shown in Table 1; we shall also try out other values of ϵ for the
comparison purpose. For the CSM method in Section 3, we
let T0 = ⌈ϵ⋆T ⌉. We also consider a baseline method called
random max sampling (RMS)—which replaces the exploita-
tion step in (5) by using the best phase shift vector so far,
i.e., θt = argmaxθ∈{θ1,...,θt−1} SNR(θ). Moreover, we take
Q3000

n (φ) as an approximation of Q∞
n (φ).

Fig. 1 shows the cumulative regrets achieved by the var-
ious methods. Observe that the gradient sampling method
outperforms the rest methods significantly; the advantage in-
creases with T . Observe also that the ϵ-greedy with the opti-
mized ϵ⋆ has much better performance than the other ϵ cases.
It is worth pointing out that ϵ-greedy is slightly better than

Table 1. The values of ϵ⋆ under different T .

T 500 1000 1500 2000

ϵ⋆ 0.478 0.374 0.325 0.295

CSM when they are given the same optimized exploration
probability ϵ⋆.

Fig. 2 displays the average SNR boost (as compared to the
case without IRS) across T blocks for the different methods.
It shows that the gradient sampling yields the highest SNR,
e.g., its SNR is approximately 11 dB higher than that of RMS
when T = 2000. Again, we observe that the performance
of ϵ-greedy is sensitive to the choice of ϵ. When ϵ = 0.1,
ϵ-greedy is almost as poor as RMS. But when ϵ⋆ is adopted,
ϵ-greedy outperforms CSM.

Moreover, Fig. 3 shows the variance of SNR over time.
We see that the variance increases with ϵ for ϵ-greedy; clearly,
the SNR becomes less stable if we perform exploration more
frequently. RMS is less stable than ϵ-greedy and gradient
sampling. In particular, observe that CSM leads to the high-
est instability of SNR, even though it can asymptotically con-
verge to the CPP solution. This is due to the fact that it does
not randomize the exploration and the exploitation blocks.

6. CONCLUSION

Blind beamforming for IRS without channel estimation is of
great practical importance. This work considers blind beam-
forming from a reinforcement learning perspective, showing
that the existing CSM method [1, 2] can be recognized as a
special case of the ϵ-greedy algorithm for the multi-armed
bandit problem. We further propose an upper approximation
of the cumulative regret and thereby optimize the exploration
probability ϵ in closed form. Moreover, we suggest a gradient
sampling scheme that is more efficient than the uniform sam-
pling in the ϵ-greedy method. Field tests at 2.6 GHz demon-
strate these reinforcement learning approaches.
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