
INVERSE QUADRATIC TRANSFORM FOR MINIMIZING A SUM OF RATIOS

Yannan Chen†, Licheng Zhao‡, Yaowen Zhang†, and Kaiming Shen†

†School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), China
‡Shenzhen Research Institute of Big Data, China

e-mail: shenkaiming@cuhk.edu.cn

ABSTRACT

A major challenge with the multi-ratio Fractional Program
(FP) is that the existing methods for the maximization prob-
lem typically do not work for the minimization case. We
propose a novel technique called inverse quadratic transform
for the sum-of-ratios minimization problem. Its main idea is
to reformulate the min-FP problem in a form amenable to ef-
ficient iterative optimization. Furthermore, this transform can
be readily extended to a general cost-function-of-multiple-
ratios minimization problem. We also give a Majorization-
Minimization (MM) interpretation of the inverse quadratic
transform, showing that all those desirable properties of MM
can be carried over to the new technique. Moreover, we
demonstrate the application of inverse quadratic transform in
minimizing the Age-of-Information (AoI) of data networks.

1. INTRODUCTION

Fractional Program (FP), namely the problem of optimizing
one or multiple ratios, has long been recognized as a funda-
mental one in extensive areas ranging from portfolio to man-
agement science, data science, and wireless communications
[1, 2]. This paper focuses on the minimization case of FP.
The main results are two-fold: a new method for minimizing
a sum of ratios (or, more generally, a cost function of multiple
ratios), and its application to Age-of-Information (AoI).

Actually, the line between maximization and minimiza-
tion is rather vague in the early studies of FP—which mostly
consider only one ratio, since the minimization problem can
be immediately converted to the maximization by flipping the
ratio. As a result, the classical methods of FP, i.e., Charnes-
Cooper algorithm [3,4] and Dinkelbach’s algorithm [5], work
for both maximization and minimization of a single ratio. As
an extension to the multiple-ratios FP, we can convert a min-
max ratios problem to a max-min ratios problem by flipping
every ratio term, and then a generalized Dinkelbach’s algo-
rithm [6] applies. Nevertheless, the conversion from mini-
mization to maximization, or the other way around, is difficult
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for the sum-of-ratios case, so maximization and minimization
are often dealt with separately in the literature.

Because the sum-of-ratios problem is NP-complete [7],
many existing methods build upon the branch-and-bound
paradigm, e.g., [7–11] for the minimization case while
[12–16] for the maximization case. These methods all guar-
antee the global optimum but are not scalable due to the ex-
ponential time complexities. The authors of [17] suggest an
extended Dinkelbach’s algorithm for the sum-of-ratios max-
imization, but its effectiveness is disproved in [18] through
a counterexample. The work in [18] proposes casting the
sum-of-ratios max problem into a “state space” wherein each
ratio term corresponds to a state variable; the main idea is
to gradually reduce the state space according to the variable
feasibility. However, as pointed out in [1], the performance
of the above method is not provable. The harmony search
method in [19] is another heuristic approach to the sum-
of-ratios max problem. Moreover, inspired by the classical
Dinkelbach’s method, [20] rewrites the sum-of-ratios mini-
mization as the difference minimization between two convex
functions, which is a well-known nonconvex optimization
problem. A more recent work [2] proposes a quadratic trans-
formation of the multiple-ratios max-FP whereby an efficient
iterative optimization can be performed. The present paper
aims to extend the quadratic transform of [2] to the min-FP.

The second part of the paper concerns with a novel ap-
plication of FP in the rate control of a multiple-sources net-
work in order to minimize the overall AoI. The notion of
AoI was introduced in the early 2010s [21] to quantify the
freshness of data packets in networks, which refers to the
time elapsed since the generation of the last successfully re-
ceived update information about the source node. The pioneer
work [21] proposes a descent algorithm for minimizing the
AoI of a single source. Considering multiple sources under a
homogeneous setup (i.e., all the sources have the same service
rate), [22, 23] show that the rate control problem can be opti-
mally solved in closed form. Rate control is much more chal-
lenging in terms of optimization for the heterogeneous setup.
The authors of [24] suggest a quasilinear approximation of the
two-source heterogenous case to facilitate rate control. Some
more recent works consider the AoI minimization task in var-
ious application scenarios, e.g., [25] proposes a reinforcement



algorithm for the sensor networks, and [26] proposes an ant-
colony heuristic algorithm for the Unmanned Aerial Vehicle
(UAV)-assisted wireless networks. In contrast, this work fo-
cuses on the optimization aspect of the AoI problem. To the
best of our knowledge, this is the very first work that views
AoI from an FP perspective.

2. SUM-OF-RATIOS MINIMIZATION PROBLEM

Consider N ratios. Each ratio consists of the numerator func-
tion An(x) and the denominator function Bn(x) of the vari-
able x ∈ Rd, n = 1, . . . , N . Assume that each An(x) > 0
is a positive convex function while each Bn(x) > 0 is a pos-
itive concave function1. With a nonempty convex constraint
set X ⊆ Rd, the sum-of-ratios minimization problem is

minimize
x∈X

N∑
n=1

An(x)

Bn(x)
. (1)

The above problem is nonconvex in general despite the con-
vexity of An(x) and the concavity of Bn(x). An extension is
to minimize a cost function of ratios. Now let the ratio vector(
A1

B1
, . . . , AN

BN

)
be the input of the cost function U : RN → R,

which, by convention, is assumed to be monotonically in-
creasing with each An

Bn
and is jointly convex in

(
A1

B1
, . . . , AN

BN

)
.

The cost-function-of-multiple-ratios minimization problem is

minimize
x∈X

U

(
A1(x)

B1(x)
, . . . ,

AN (x)

BN (x)

)
. (2)

Clearly, the above problem encompasses the sum-of-ratios
minimization problem as a special case.

3. PROPOSED METHOD

3.1. Two Common Misconceptions

It is intriguing to rewrite (1) as

maximize
x∈X

N∑
n=1

An(x)

−Bn(x)
(3)

so as to apply the existing method in [2] for the sum-of-ratios
maximization problem. But this is problematic since max-FP
requires both numerator and denominator to be positive.

Another possible approach is to rewrite (1) as

maximize
x∈X

N∑
n=1

Bn(x)

An(x)
(4)

by flipping all the ratios. The two problems, (1) and (4), are
not equivalent in general unless N = 1. It turns out that solv-
ing (4) can be interpreted as minimizing a lower bound on the

1By symmetry, max-FP works often assume concave An and convex Bn.

sum-of-ratios objective. To see this, just treat 1
N

∑N
n=1

An

Bn
as

an arithmetic mean and then bound it below by the harmonic
mean N(

∑
n

Bn

An
)−1; now recognize the problem in (4) as

minimizing the harmonic mean. The above approach may
yield quite poor performance because the harmonic mean can
be a loose bound to the arithmetic mean.

In contrast, the proposed method can be interpreted as us-
ing a novel upper bound to approximate the sum-of-ratios ob-
jective. Furthermore, as discussed in Section 3.3, this approx-
imation can be justified from a Majorization-Minimization
(MM) point of view.

3.2. Inverse Quadratic Transform

We now present the main result of this work:

Proposition 1. The sum-of-ratios minimization problem in
(1) is equivalent to

minimize
x∈X ,y∈RN

N∑
n=1

1

2yn
√

Bn(x)− y2nAn(x)
(5a)

subject to 2yn
√
Bn(x)− y2nAn(x) > 0, ∀n (5b)

in the sense that x⋆ is a solution to (1) if and only if (x⋆,y⋆)
is a solution to (5).

Proof. When x is held fixed, the auxiliary variable y in (5)
can be optimally determined as y⋆n =

√
Bn(x)/An(x). With

each y⋆n substituted into the new objective (5a) as a function of
x, we recover the original sum-of-ratios objective in (1). In
particular, the new constraint (5b) is satisfied automatically
under y⋆n =

√
Bn(x)/An(x) regardless of the value of x.

The equivalence is then verified.

Differing from the quadratic transform in [2] for the max-
FP, the inverse quadratic transform in Proposition 1 for the
min-FP needs to introduce an additional constraint (5b). This
subtle difference is somewhat unexpected. We remark that
(5b) is critical to the optimal update y⋆n =

√
Bn(x)/An(x)

in (5) for fixed x; otherwise we would have let y⋆n → 0− and
consequently the new objective would go off to infinity.

Furthermore, the inverse quadratic transform can be ex-
tended to the cost-function-of-multiple-ratios minimization
problem, as stated in the following corollary.

Corollary 1. The cost-function-of-multiple-ratios minimiza-
tion problem in (2) is equivalent to

minimize
x∈X ,y∈RN

U

(
1

2y1
√

B1(x)− y21A1(x)
,

. . . ,
1

2yN
√
BN (x)− y2NAN (x)

)
(6a)

subject to 2yn
√
Bn(x)− y2nAn(x) > 0, ∀n (6b)

in the sense that x⋆ is a solution to (2) if and only if (x⋆,y⋆)
is a solution to (6).



Algorithm 1 Iterative Algorithm for Convex-Concave FP
1: Initialize x to some feasible point in X
2: repeat
3: Update each auxiliary variable yn =

√
Bn(x)/An(x)

4: Solve the convex problem of x in (6) for fixed y
5: until the objective value converges

Our discussion in the rest of the section focuses on the
above general form of the inverse quadratic transform. We
propose optimizing x and y alternatingly in the new problem
(6). When x is held fixed, each yn is optimally determined

as y⋆n =

√
Bn(x)

An(x)
. Further, according to the composition rule

that preserves convexity, optimizing x in (6) under fixed y
turns out to be a convex problem, so the iterative update on
x can be performed efficiently by the standard optimization.
Algorithm 1 summarizes the above optimization procedure
based on inverse quadratic transform.

It can be easily seen that the new objective in (6a) is
monotonically decreasing by the alternating optimization be-
tween x and y. More importantly, we will show in the next
subsection that the original cost-function-of-multiple-ratios
objective in (2) has a monotonically decreasing convergence
to a stationary point under certain conditions.

3.3. Connection to Majorization-Minimization

We now connect Algorithm 1 to the MM theory by show-
ing that the inverse quadratic transform in Corollary 1 (or its
special case as stated in Proposition 1) can be interpreted as
constructing a surrogate function for the min-FP. To ease no-
tation, we write the original cost-function-of-multiple-ratios
objective as

f(x) = U

(
A1(x)

B1(x)
, . . . ,

AN (x)

BN (x)

)
. (7)

The updating formula for yn in step 3 of Algorithm 1 is de-
noted by

pn(x) =

√
An(x)

Bn(x)
. (8)

Suppose x̂ is the latest update of x in Algorithm 1, and thus
each yn is now updated to pn(x̂). Substituting yn = pn(x̂) in
the new objective (6) gives rise to a function of x conditioned
on x̂:

g(x|x̂) = U

(
1

2p1(x̂)
√

B1(x)− p21(x̂)A1(x)
,

. . . ,
1

2pN (x̂)
√
BN (x)− p2N (x̂)AN (x)

)
. (9)

It can be readily shown that

g(x̂|x̂) = f(x̂). (10)

.
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Fig. 1. An AoI model with K source nodes and a server.

Fig. 2. A typical curve of AoI versus time.

Moreover, for arbitrary (x, x̂), there is g(x̂|x) ≥ g(x̂|x̂)
since pn(x̂) gives the optimal yn that minimizes the new ob-
jective. Interchanging the roles of x and x̂ yields

g(x|x̂) ≥ g(x|x)=f(x). (11)

Combining (10) and (11) shows that g(x|x̂) constitutes a sur-
rogate function [27] with respect to f(x). Thus, Algorithm 1
is in essence an MM procedure: In an alternating fashion, up-
date y to construct a new upper bound on f(x), then update
x to improve the solution based on the current bound. By the
MM theory [28], we further obtain the following result.

Proposition 2. Algorithm 1 yields a monotonically decreas-
ing convergence to a stationary point of (2) provided that the
cost function is differentiable and strongly convex.

4. FRACTIONAL PROGRAMMING FOR AOI

Consider a multiple-sources system wherein K ≥ 2 source
nodes share a common server as shown in Fig. 1. Each source
node k = 1, . . . ,K delivers update packets constantly toward
the server at rate λk, while the departure rate of the queue
awaiting the service is µ. The ith update packet from source
k is delivered at time tik and finally departs the server at time
t′ik. The delay t′ik − tik is caused by the queue waiting and
the server processing. At the current time τ , we use Nk(τ)
to denote the arrival time of the most recently received packet
from source k:

Nk(τ) = max {t′ik : t′ik ≤ τ} . (12)

The instantaneous AoI of source node k at the present time τ ,
denoted by ∆k(τ), is defined to be the time elapsed since its



Table 1. Performance of the different rate control schemes
Sum of AoI Sum of Squared AoI

Max Rate 447.1 3.3× 104

Equal Rate [29] 218.8 5.9× 103

FP-Based Method 131.8 1.8× 103

last update packet departs the server, i.e.,

∆k(τ) = τ −Nk(τ). (13)

As a result, ∆k(τ) increases linearly with τ , and drops when-
ever a new update packet departs the server, so ∆k(τ) has a
sawtooth profile along the time axis as shown in Fig. 2. We
are interested in the average AoI in the long run:

∆̄k = lim
T→∞

1

T

∫ T

0

∆k(τ)dτ, (14)

which can be recognized as the average area of the trapezoid
below each tooth of the sawtooth curve in Fig. 2.

The specific expression of ∆̄k depends on the queuing
system model. For the M/M/1 model under LCFS-S, i.e., Last
Come First Serve scheme that permits preempting package in
Service, also with priority as considered in [29], the average
AoI of source k is given by

∆̄k =
1 + ρk + 3ρ̂k + 3ρ̂kρk + 3ρ̂2k + ρ̂2kρk + ρ̂3k

µρk (1 + ρ̂k)
, (15)

where ρk = λk/µ and ρ̂k =
∑k−1

i=1 ρi. Let U : RK → R
be an increasing convex cost function of ∆̄k. The rate control
problem is to minimize an increasing convex cost function of
AoI by optimizing λk’s, i.e.,

minimize
λ1,...,λK

U(∆̄1, . . . , ∆̄K) (16a)

subject to 0 ≤ λk ≤ µ, for k = 1, . . . ,K, (16b)

which encompasses the traditional sum-of-AoI minimization
[22–26] as a special case. The following proposed method
also works for other types of AoI penalization, e.g., the sum-
of-squared-AoI minimization.

Although the fractional form of ∆̄k in (15) strongly sug-
gests the use of FP, we cannot directly apply the technique in
Corollary 1 because the numerator and denominator are not
respectively convex and concave. Nevertheless, this issue can
be addressed by rewriting ∆̄k as a sum of two fractions:

∆̄k =
ρ̂2k + 3ρ̂k + 1

µ(1 + ρ̂k)
+

(ρ̂k + 1)2

µρk
. (17)

Now each ratio term has its numerator be convex and its de-
nominator be concave. Notice that the objective remains an
increasing convex function of these ratios.

We test the performance of the proposed inverse quadratic
transform method by simulations. Let K = 10 and µ = 1.
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Fig. 3. Convergence of the proposed FP-based method.

Consider two benchmarks: (i) the equal rate optimization [29]
that assumes all λk’s are equal and then performs the one-
dimensional search; (ii) the max rate policy that sets each
λk = µ. Two types of objectives are considered: the sum
of AoI

∑
k ∆̄k and the sum of squared AoI

∑
k ∆̄

2
k. Ob-

serve from Fig. 3 that the proposed FP-based method has
fast convergence for both sum-of-AoI minimization and sum-
of-squared-AoI minimization. Actually, the majority of the
AoI reduction is achieved after the first iteration. Moreover,
as shown in Table 1, the proposed method outperforms the
benchmark methods significantly. The sum-of-AoI of the pro-
posed method is approximately 40% lower than that of the
equal rate scheme [29], and is approximately 70% lower than
that of the max rate scheme.

5. CONCLUSION

The paper proposes a new method called inverse quadratic
transform for minimizing a sum of ratios, and more generally,
for minimizing a cost function of multiple ratios. We also
furnish a justification based on the MM theory. Furthermore,
we illustrate the use of this new min-FP method in reducing
AoI for multi-source networks.
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