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ABSTRACT

This work suggests a joint optimization of the aerial intelli-
gent reflecting surface (AIRS) placement, passive beamform-
ing, and base station (BS) association to improve the overall
data throughput and fairness across downlink heterogeneous
cellular networks. Differing from the related works in the
literature that just seek to maximize signal-to-interference-
plus-noise ratio (SINR), the paper takes into account the
load balancing between macrocells and small cells. The
resulting joint optimization problem is mixed continuous-
discrete and has a highly bumpy landscape, so the traditional
(sub)gradient-based tools are not suited. We propose a model-
free approach based on adaptive particle swarm optimization
(APSO) and blind beamforming, which recovers the solution
from random explorations of the solution space. Simulations
show that the proposed algorithm enables balanced traffic for
the coexisting macro and small cells, and thereby achieves a
higher network utility than the benchmark methods.

1. INTRODUCTION

Intelligent reflecting surface (IRS) is an emerging device that
uses a large array of low-cost reflective elements to orient the
radio waves toward the intended receiver [1]. While offer-
ing advantages like low cost and flexibility, IRS have been
demonstrated to have the potential to enhance network ef-
ficiency in many aspects [2–5]. The method for improving
the overall data rate is studied in [2]. Additionally, an IRS
can be positioned near a base station (BS) to broaden sig-
nal coverage and simultaneously reduce the cost of the IRS-
communication channel, as discussed in [3]. The optimiza-
tion of BS-user association through changing IRS beamform-
ing has been further investigated for heterogeneous IRS net-
works in [4] and for multi-access edge computing system in
[5].

In the latest development of IRS, Aerial-IRS (AIRS) [6]
attracts increasing attention. AIRS uses the unmanned aerial
vehicle (UAV) to deploy the IRS in low-amplitude space,
aligning the IRS panels parallel to the ground. Compared
with the other practice of installing IRS on the exterior of
building, which positions the IRS panels perpendicular to the
ground, AIRS notably improves the mobility and the scope of

coverage, as shown in Fig. 1. While AIRS inherits the advan-
tages of IRS, it also possesses unique properties. AIRS helps
maximize the worst-case signal-to-noise ratio [7], worst-case
sum secrecy rate [8], and accumulated throughput [9]. [10]
reveals a method for AIRS to improve the average achievable
rate of the relaying network.

For both IRS and AIRS, the placement and beamform-
ing are the most important properties. Existing studies have
shown an optimal placement of IRS leads to a larger cover-
age of signal [11], and a stochastic geometry distribution of
placement leads to a better performance [12]. And as men-
tioned previously, beamforming could improve the BS-user
association [4, 5].

Despite the abundant studies, the effects of placement and
beamforming on load balancing have not yet been explored
in the literature. In this paper, we focus on optimizing the as-
sociation between BSs and users for AIRS through iteratively
optimizing the placement and beamforming in the scenario of
ultra-dense heterogeneous downlink cellular networks where
a large number of BSs are deployed [13]. As analyzed in [14],
BS-user association is a vital factor for load balancing. Thus
our method leads to an optimized load-balancing network.

The main contributions of this paper are three-fold. First,
we analyze the effect of AIRS placement and beamforming
on association and take both aspects into the design to maxi-
mize load balancing. Secondly, we construct and analyze an
AIRS model capable of reflecting all incoming signals. It is
more practically significant compared to previous studies in
which AIRS only communicates with specific BSs or users.
Third, we propose an algorithm without requiring any chan-
nel state information. In practice, the AIRS controller only
requires signal quality information (i.e., data rate) from the
user to improve the communication quality.

2. PROBLEM STATEMENT

Our cellular communication system consists of T BSs and U
users, where an AIRS is deployed to assist the association,
as shown in Fig. 1. We use (x, y) to denote the coordinates
of the AIRS location. And the height of the AIRS is fixed
in our setting. The AIRS comprises N reflective elements,
with the beamforming vector denoted by θ = (θ1, . . . , θN ),
where each θn, n = 1, . . . , N , represents the phase shift of
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Fig. 1: AIRS-assisted downlink cellular network.

the nth reflective element. Furthermore, we assume that the
choice of each θn is restricted to a uniform discrete set ΦK =
{0, ω, · · · , (K − 1)ω}, where ω = 2π

K for some given integer
K ≥ 2. We use H̃t,u ∈ C to denote the channel of the direct
path between tth BS and the uth user. And the sum of all N
reflected path can be expressed with respect to AIRS location
(x, y) and beamforming vector θ, i.e.,

Gt,u(x, y,θ) =

N∑
n=1

H̃t,n(x, y)H̃n,u(x, y)e
jθn , (1)

where H̃t,n, H̃n,u represent the channel of incident signal
from the tth BS to the nth AIRS reflective element and the
channel of the reflected signal from the nth AIRS element to
the uth user, respectively. Then the overall channel between
the tth BS and the uth user can be expressed as,

Ht,u(x, y,θ) = H̃t,u +Gt,u(x, y,θ). (2)

The mean power of the transmit signal of the tth BS is denoted
as Pt, and the mean power of the received signal at uth user
can be computed as

pt,u(x, y,θ) = Pt |Ht,u(x, y,θ)|2 . (3)

The corresponding signal-to-interference-plus-noise ratio is

SINRt,u(x, y,θ) =
pt,u(x, y,θ)∑

b ̸=t pb,u(x, y,θ) + δ2
, (4)

where δ2 is the background noise power.
We use a T×U binary matrix Q = [qt,u] to denote the as-

sociation indicator matrix for BS and user association, where
qt,u = 1 indicates that the uth user is associated with the tth
BS, and qt,u = 0 otherwise. Each user only associates with
one BS at a time, i.e.

∑T
t=1 qt,u = 1. This paper adopts

a proportionally fair network utility optimization framework
of maximizing the sum log-utility across all the users in the
entire network. A key step in the problem formulation is an
observation made in [13]. To be more specific, for a given
set of users associated with a BS, the round-robin schedule is
proportionally fair to balance the resources for the users. In
our case, a total of Ut(Q) =

∑U
u=1 qt,u users are associated

with BS t. Applying round-robin schedule to the users, the
long-term average rate of the uth user associated with the tth
BS is given by

Rt,u(x, y,θ,Q) =
1

Ut(Q)
log (1 + SINRt,u(x, y,θ)) . (5)

We seek the optimal x, y, θ and Q that maximizing the overall
network utility, i.e.,

max
x,y,θ,Q

U∑
u=1

T∑
t=1

qt,u log (Rt,u(x, y,θ,Q)) , (6a)

s.t. (x, y) ∈ R2, (6b)
θn ∈ ΦK , (6c)
T∑

t=1

qt,u = 1,∀ u. (6d)

Constraint (6b) states that the potential location of AIRS is
continuous in R2. Constraint (6c) restricts discrete phase shift
of AIRS reflective element. Constraint (6d) ensures that each
user can only associate with one BS.

Optimizing the AIRS beamformer is numerically difficult
because the solution space is of huge size KN . Our previ-
ous work [15] proposes the CSM method, and gives an ac-
ceptable solution. However, the real difficulty is optimiz-
ing the AIRS location. Even with a fixed beamformer and
association indicator, the optimization is challenging due to
the complex landscape of the objective function (as shown in
Fig. 2). This complexity, characterized by an extremely large
Lipschitz constant for its gradient, makes it difficult to apply
traditional gradient methods. Furthermore, from a practical
standpoint, the complete channel state information required
in gradient calculations is too complex to obtain, given the
limited computational resources in the network. This inherent
difficulty, coupled with the current communication protocols,
makes traditional gradient methods infeasible here, necessi-
tating the exploration of alternative methods that can bypass
the need for complete channel information.

3. PROPOSED APPROACH

To deal with the above challenges, the optimization problem
is solved with a black box approach in an iterative manner.
One iteration begins with optimizing the placement of the
AIRS, assuming a fixed beamformer. Then based on the op-
timized placement, the beamformer of the AIRS is optimized
and go to the next iteration. Whenever the AIRS placement or
beamformer is updated, the BS-user association is reassessed
using the Max-SINR scheme, i.e., for each user, until no sig-
nificant improvement of the overall network utility

t⋆ = arg max
t=1,...,T

SINRt,u, and qt⋆,u = 1. (7)
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Fig. 2: Landscape of the problem (6). Fig. 2b and 2c show the
function value and gradient around the optimal point in Fig. 2a.

A detailed description of iteratively optimizing AIRS place-
ment and beamformer as well as optimizing the association
are presented in the following subsections.

3.1. Optimization of AIRS Placement and association

Given fixed association indicator matrix Q and AIRS beam-
former θ, the function value of (6) is denoted as F (x, y). We
use a stochastic global search method, known as APSO, to
optimize the AIRS location. This method helps avoid getting
trapped in local optima by probabilistically adopting alterna-
tive sub-optimal solutions.

The solving approach begins with the random initializa-
tion of potential points. Each potential point has its own ve-
locity which contains the update direction and step size. In
the ith iteration, the set of L potential points is denoted as
Ri = {r(ℓ)i ∈ R2|ℓ = 1, . . . , L} and the set of the velocities
of these potential points is denoted as Vi = {v(ℓ)i ∈ R2|ℓ =
1, . . . , L}. Further, two types of best-performing points are
defined during the search process. The first one, pBest(ℓ),
represents the best point up to the latest iteration of the ℓth
potential point. The second one, nBesti, represents the best
point among all L potential points in the ith iteration, i.e.,

pBest(ℓ) = arg max
j=1,...,i

F (r
(ℓ)
j ),∀ℓ = 1, . . . , L, (8)

nBesti = arg max
ℓ=1,...,L

F (r
(ℓ)
i ), at ith iteration. (9)

In each iteration, the velocity is updated based on the latest
iteration velocity and information from the historical path of
potential points. Then the ℓth potential point and its velocity

at the ith iteration are updated as

v
(ℓ)
i = wv

(ℓ)
i−1 + c1rand

(ℓ)
1

(
pBest(ℓ) − r

(ℓ)
i−1

)
+ c2rand

(ℓ)
2

(
nBesti − r

(ℓ)
i−1

)
, (10)

r
(ℓ)
i = r

(ℓ)
i−1 + v

(ℓ)
i , (11)

where w is the inertia weight, c1 and c2 are the acceleration
coefficients, and rand

(ℓ)
1 , rand

(ℓ)
2

i.i.d.∼ Uniform(0, 1) are
two i.i.d. random variables uniformly distributed in [0, 1].
The update of inertia weight w and acceleration coeffi-
cients c1, c2 in each iteration follows the evolutionary state of
searching, and thus the searching evolutionary state S needs
to be further characterized.

The characterization of the searching evolutionary state
at ith iteration is defined based on the geometric relation-
ship between L potential points Ri and current most optimal
point gBesti. The geometric relationship is characterized
by four evolutionary states: “exploration”, “exploitation”,
“convergence” and “jumping-out”. Specifically, the evo-
lutionary factor, denoted as τ , is an important parameter
in the searching evolutionary state. It is defined based on
the mean distance d(ℓ) of each potential point r

(ℓ)
i , where

d(ℓ) = 1
L−1

∑L
l=1,l ̸=ℓ ∥r

(ℓ)
i − r

(l)
i ∥. The mean distance of

gBest is denoted as d(globe). d(max) and d(min) represent the
maximum and minimum mean distances among the L + 1
points, which includes all L potential points Ri and the cur-
rent most optimal point gBesti. The evolutionary factor τ

is then defined as, τ = d(globe)−d(min)

d(max)−d(min) ∈ [0, 1]. The detailed
mapping from the evolutionary factor τ to evolutionary state
follows the membership function presented in [16].

The inertia weight w is updated using a sigmoid mapping
w(τ) = 1

1+1.5e−2.6τ based on the evolutionary factor and
state. The acceleration coefficients c1 and c2 are adaptively
updated in each iteration, and the update processes are inter-
preted as ’self-cognition’ and ’social influence’, respectively.
The former encourages exploration of local niches, while the
latter drives convergence to the current globally optimal re-
gion [16]. The sum of c1 and c2 is necessitating normalized
when their sum exceeds limit.

3.2. Optimization of AIRS Beamforming

After determining the placement of AIRS, the remaining
problem is how to design the AIRS beamforming coefficient.
The CSM method proposed in our previous work [15] is
adopted. We generate M random samples, and use a scalar-
valued utility R(m) =

∑U
u=1 R

(m)
u , calculated by the sum of

all users’ overall rate (5), to quantify the performance of each
random sample θm, m = 1,. . . ,M.

Let Qnk ⊆ {1, . . . , T} denote the subset of all those ran-
dom samples with θnm = kω, i.e.,

Qnk = {t : θnm = kω}. (12)



The conditional sample mean of R(m) within each subset Qnk

is computed via

Ê[R|θn = kω] =
1

|Qnk|
∑

m∈Qnk

R(m). (13)

Each θn is set as some φ ∈ ΦK with the highest conditional
sample mean Ê[R|θn = kω].

4. SIMULATION RESULTS

To validate the proposed optimization method, we employ the
multi-cell wireless communication network model for simu-
lations and algorithm testing. This model considers the net-
work’s geometry, which is a key factor influencing the opti-
mization of AIRS placement, beamforming, and BS-user as-
sociation. Specifically, the transmitted powers of macro and
pico BSs in the model are Pmacro = 45dBm and Ppico =
36dBm, respectively, and the background noise level is σ2 =
−90dBm. The AIRS consists of N reflecting elements, each
with a size of 0.3m x 0.3m. We control the size of AIRS by
changing the number of the reflecting elements N . Addition-
ally, we choose a relatively large number of AIRS to simulate
the application in a large area.

In the simulation, we use four models to compare, in-
cluding models proposed in [17] and [18]. Apart from
our proposed scheme, named AIRS-Proposed, the other
three schemes are considered baseline models. The NoIRS-
MaxSINR scheme solves the association problem based on
the max-SINR scheme without the aid of AIRS. The NoIRS-
Distributed scheme solves the association problem based
on the PF scheme using a distributed method [13]. Lastly,
the AIRS-Random scheme optimizes the AIRS beamforming
based on random placements and determines the association
based on the max-SINR scheme. The four schemes are evalu-
ated in the scenario with 7 cells. Each cell contains one macro
BS and three pico BSs with fixed locations and 400 uniformly
distributed users. The size of each cell is with radius 500m
and each cell has one AIRS with 40 ∗ 40 reflecting elements.

Fig. 3 displays the AIRS-aided association between BSs
and users across multiple cells, with the AIRS, macro BSs,
and pico BSs represented by a black square, red diamonds,
and blue diamonds respectively. The results of four associ-
ation schemes are sequentially presented in Fig. 3a-3d. It’s
observable that optimized placement and beamforming of
AIRS effectively balance the load between pico and macro
BSs, even without adopting the PF scheme. However, ran-
dom AIRS placement, as shown in Fig. 3c, deteriorates load
balancing performance, underscoring the significant impact
of AIRS placement on association performance. Fig. 4
depicts load balancing across different schemes. The NoIRS-
MaxSINR scheme results in highly unbalanced loads, over-
loading macro BSs and underutilizing pico BSs. And the
issue is mitigated by the NoAIRS-Distributed scheme be-
cause the macro BSs and pico BSs almost share the users

(a) NoIRS-MaxSINR scheme (b) NoIRS-Distributed scheme

(c) AIRS-Random scheme (d) AIRS-Proposed scheme

Fig. 3: Association between BSs and users under different schemes

Fig. 4: Number of macro/pico users for various methods

equally. The AIRS-aided association provides a load balanc-
ing result similar to the NoAIRS-Distributed scheme, without
requiring any intermediary pricing computations between the
base station and the user [13, 14].

5. CONCLUSION

We propose a joint approach to optimize AIRS placement,
beamforming, and association, aiming at a balanced network
load. Our iterative solution to the fluctuating combinatorial
optimization problem utilizes APSO and CSM and gives a
good result. Compared to other approaches, we employ the
max-SINR scheme for BS-user association, where the asso-
ciation decision is made solely based on the received signal
quality information. Simulation results demonstrate the ef-
fectiveness of our method in enhancing communication effi-
ciency by improving load balance.
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