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ABSTRACT
This work aims to reduce the complexity of wireless beam-
forming when massive antennas are deployed. The main idea
is to design a linear transform that maps the beamforming ma-
trix to a low-dimension new space. While some special cases
of this change-of-variable approach have been considered in
the literature, this paper investigates its full generality. Two
basic questions are: (i) What is the smallest dimension of the
new space with the problem equivalence preserved? (ii) How
is the new space constructed given the target dimension? The
paper partially answers the first question by bounding the di-
mension limit from above. The second question is numeri-
cally difficult because it involves the high-dimension noncon-
vex optimization. We propose using the learning technique
to extract features of the channel tensor and thereby construct
the new space. Simulations show that the proposed method
runs faster and achieves higher utility.

1. INTRODUCTION

A research hotspot in wireless communications is to redesign
the beamforming algorithm to handle the soaring number of
antennas at base station (BS). This work proposes a change-
of-variable approach to the dimensionality reduction of the
beamforming problem via optimization and learning jointly.

We focus on the weighted-sum-rate maximization prob-
lem for beamforming, which has been extensively studied in
the existing literature over the past two decades. The main-
stream approaches nowadays include the weighted minimum
mean square error (WMMSE) algorithm [1, 2] and the frac-
tional programming (FP) method [3, 4]. The two methods
both work in an iterative fashion and require inverting an M×
M matrix per iterate, where M is the number of antennas at
the BS, so the computational complexity poses a formidable
challenge when massive antennas are deployed.

A recent progress achieved in [5] is to alleviate the matrix
inverse operation in the WMMSE algorithm by the following
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change of variable: V = GX , where V is the beamforming
variable, G is a prescribed matrix, and X is the new vari-
able. As a consequence, the primal beamforming problem
maxV f(V ) is converted to maxX f(GX). It turns out that
the new problem can still be addressed by WMMSE and FP.
Most importantly, when G ∈ CM×L, the dimension of the
matrix inverse is changed from M × M to L × L, so one
wishes to make L small. Nevertheless, L also needs to be
sufficiently large so that the new problem is still equivalent
to (or at least close to) the original problem. As a theoretical
contribution of this work, we provide an upper bound on the
limit of L that guarantees the problem equivalence.

Only knowing the range of L is not enough. We further
need to find a way to construct G efficiently given L. The
previous work [5] has provided an elegant way, but it requires
L to be fairly large, sometimes even larger than M so that the
change of variable becomes meaningless. It is numerically
difficult to find the optimal G for a small L, so we resort to
machine learning. Specifically, a deep unfolding paradigm
is adopted in our case to capture the iteration structure of
WMMSE and FP. Because the G construction aims at the
optimal column space of G where the beamforming variable
resides in, we refer to this method as basis learning.

Aside from change of variable, other approaches to the
high-dimensional beamforming problems can be found in the
literature to date. The authors of [6] propose an eigenmode-
based improvement of the classical low-complexity zero forc-
ing algorithm, with a provable asymptotic gain for the sum
rate as the number of user terminals tends to infinity. A more
recent work [7] aims to completely eliminate the matrix in-
verse operation from WMMSE and FP by altering their it-
eration structures, albeit at the risk of slowing down conver-
gence. Moreover, a line of works [8–10] suggest using neural
networks to mimic the behavior of the WMMSE algorithm.

2. WIRELESS BEAMFORMING PROBLEM

Following [5], we focus on a single-cell downlink network
where one BS sends independent data streams to K > 1 user
terminals simultaneously via spatial multiplexing. The BS



has M transmit antennas while each user terminal has N re-
ceive antennas. Note that M is typically much larger than
N . Thus, the number of data streams of each user terminal,
written d, is bounded by N from above. Assign a beamform-
ing matrix Vk ∈ CM×d to each user terminal k. Moreover,
let Hk ∈ CN×M be the MIMO channel matrix from the BS
to user terminal k. The resulting achievable data rate of user
terminal k is given by

Rk = log
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with I denoting an identity matrix, η denoting the thermal
noise power, and (·)∗ denoting the conjugate transpose of a
matrix. Furthermore, assign a positive rate weight ωk > 0 to
each user terminal k in accordance with its priority. Assum-
ing that the channel state information (CSI) is available, we
optimize {Vk} to maximize the weighted sum rates:

maximize
{Vk}

fo({Vk}) :=
K∑

k=1

ωkRk (1a)

subject to
K∑

k=1

∥Vk∥2 = P, (1b)

where ∥ · ∥ is the Frobenius norm, and P is the power con-
straint. It is easy to see that replacing “=” with “≤” in (1b)
does not impact the solution.

3. LIMITATIONS OF EXISTING METHODS

WMMSE [1, 2] and FP [3] are two common approaches1 to
problem (1), both recasting the primal objective fo({Vk}) to

fQ({Vk}) =
K∑

k=1

tr
(
B∗

kVk + V ∗
k Bk − V ∗

k AVk

)
, (2)

where the matrix Bk ∈ CM×d and the positive semidefinite
(PSD) matrix A ∈ HM×M

+ are iteratively updated as in [3].
For fixed A and Bk, each Vk can be optimally obtained as

Vk = (A+ λI)−1Bk, (3)

where the Lagrange multiplier λ ≥ 0 is chosen to enforce∑K
k=1 ∥Vk∥2 = P . However, the solution in (3) becomes

computationally daunting when M is large, since it requires
inverting an M ×M matrix A+λI . To make matters worse,
we must invert a sequence of such M ×M matrices in order
to decide λ (e.g., by the bisection search).

To get rid of the Lagrange multiplier tuning, the authors
of [5] suggest another new objective function

fS({Vk}) =
K∑

k=1

tr
(
F ∗
kVk + V ∗

k Fk − V ∗
k EVk

)
, (4)

1Actually, FP amounts to a generalization of WMMSE, and can strictly
outperform WMMSE when it involves discrete constraints as shown in [11].

where Fk ∈ CM×d and E ∈ HM×M
+ are iteratively updated

as specified later in Algorithm 1.

Lemma 1 {V ′
k} is a stationary point of problem (1) if and

only if it is a stationary point of max fS({Vk}) after the iter-
ative updates of E and Fk converge.

Regarding the dimensionality issue, the authors of [5] further
propose the following substitution:

Vk = GXk, (5)

where G ∈ CM×NK stacks the channel matrices as

G = [H∗
1 ,H

∗
2 , . . . ,H

∗
K ]. (6)

Thus, with each Vk replaced by a new variable Xk ∈
CNK×d, the new objective fS({Vk}) is rewritten as

fZ({Xk}) = fS({GXk})

=

K∑
k=1

tr(F ∗
kGXk +X∗

kG
∗Fk −X∗

kG
∗EGXk). (7)

The main result of [5] is to convert the constrained problem
of fo({Vk}) to an unconstrained problem of fS({Xk}), as
stated below.

Proposition 1 (Theorem 1 in [5]) For G as defined in (6),
{X ′

k} is a stationary point of max fZ({Xk}) if and only if
{V ′

k =
√
αGX ′

k : α = P/
∑K

k=1 ∥GX ′
k∥2} is a stationary

point of problem (1).

Thus, we solve max fS({Xk}) as Xk = (G∗EG)−1G∗Fk

with E and Fk iteratively updated till convergence, and then
scale all the GXk’s simultaneously to enforce the power
constraint P , namely the RWMMSE algorithm [5]. Impor-
tantly, the M ×M matrix inverse in (3) is now turned to the
NK ×NK matrix inverse, so the computational complexity
becomes much lower when NK ≪ M .

However, NK ≪ M need not hold in practice, since K is
also a large number. Actually, it can happen that NK > M ,
in which case RWMMSE is even less efficient than WMMSE.
As such, this paper aims to reduce the problem dimensionality
in general without any special assumptions from [5].

4. PROPOSED CHANGE OF VARIABLE

4.1. Fundamental Limit Analysis

We return to the variable substitution Vk = GXk in (5)
but no longer require G to be constructed as in (5). Rather,
G can now be an arbitrary M × L matrix, where L is a
design parameter, i.e., G = [g1, g2, . . . , gL]. As a result,
each column of Vk falls in the column space Col(G) =
span{g1, g2, . . . , gL}. Thus, if G is fixed and we are only



Fig. 1. The architecture of BasisNet. The features of channels are extracted by the convolutional layers, and then are fed to the
fully connected layer to yield G. The generated G is provided to each block for the iterative updates as shown in Algorithm 1.

allowed to change Xk, then the possible values of Vk are
completely determined by Col(G).

Note that the choice of L plays a key role. For the dimen-
sionality reduction purpose, we wish to make L as small as
possible. However, when L is too small, the new problem of
Xk is no longer equivalent to the original problem of Vk. A
trivial choice is to let L = M and G = I , so there is an iden-
tity mapping between Vk and Xk. But we are most interested
in this question: is it possible to let L < M while guarantee-
ing that the primal optimal solution will not be missed out?

Thus, the main result from [5] can then be thought of as a
partial answer to the above question. The authors of [5] show
that L can be reduced to NK whenever NK < M . We now
give a strengthened result in the following theorem.

Theorem 1 When L ≥ Kd, there exists some G ∈ CM×L

such that problem (1) is equivalent to max fZ({Xk}) in the
sense that they have the same global optimum after the itera-
tive updates of E and Fk converge.

Proof 1 (Sketched) Clearly, if the theorem holds for a par-
ticular L, then it also holds when L becomes larger since we
can augment G by zero padding. Thus, it suffices to consider
the case of L = Kd. Assume that {V ′

k} is a global solution
to problem (1). According to the FP theory [3], we must have
V ′
k = (A+ λI)−1Bk, where A, Bk, and λ are described at

the beginning of Section 3. Now we construct G as

G = [B1,B2, . . . ,BK ]. (8)

For V ′ = [V ′
1 ,V

′
2 , . . . ,V

′
K ], we have V ′ = (A + λI)−1G.

A key observation is that A can be factorized into A = GU
with some U ∈ CKd×M . As a result, we can rewrite V ′ as

V ′ = (GU + λI)−1G = G(UG+ λI)−1,

where the second equality follows by the Woodbury matrix
identity. We then recover the solution of {Xk} as

[X1,X2, . . . ,XK ] = (UG+ λI)−1.

Algorithm 1 Proposed High-Dimensional Beamforming
1: construct G by BasisNet
2: initialize X to a feasible value
3: repeat
4: compute α = P/

∑
k ∥Vk∥2 and Vk = GXk

5: update each Γk to
V ∗H∗

k (
∑

j ̸=k HkVjV
∗
j H∗

k + η
α
I)−1HkVk

6: update each Yk to (
∑

j HkVjV
∗
j H∗

k + η
α
I)−1HkVk

7: update each Xk to (G∗EG)−1G∗Fk,
where E =

∑
j ωjH

∗
j Yj(I + Γj)Y

∗
j Hj + νI,Fk =

ωkH
∗
kYk(I + Γk), and ν = η

P

∑
j ωjtr

(
Yj(I + Γj)Y

∗
j

)
8: until convergence
9: output {Vk =

√
αVk}

Note that the condition L = Kd is used when we construct G
in (8). Furthermore, it can be shown (e.g., by the FP theory
from [3]) that fZ({Xk}) = fo({V ′

k}) after the iterative up-
dates of A and Bk converge. Thus, the global optimality of
{Xk} can be verified immediately.

Remark 1 The choice of G in Theorem 1 may not be unique.
For example, when L = KN , both (6) and (8) are feasible,
and they lead to distinct choices of G in general.

Remark 2 Theorem 1 is mainly about the existence of G.
The way we construct G as in (8) is of limited practical inter-
est because it entails iterative update of Bk, which leads us
back to the complexity of WMMSE and FP.

4.2. Basis Learning

It remains to find a “good” G given L. As implied in Re-
mark 2, it is difficult to decide G by the optimization tools.
We propose using a neural network architecture to learn the
G construction based on the current CSI. Recall that G serves
to give a column space Col(G) that limits Vk, so our neural
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Fig. 6. Sum rate vs. running time.
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Fig. 7. Influence of L on Algorithm 1.

network in essence learns how to choose the basis of a col-
umn space. Thus, the proposed neural network architecture
is termed BasisNet. The proposed beamforming algorithm is
described in Algorithm 1, with BasisNet illustrated in Fig. 1.

As shown in Fig. 1, we adopt a deep unfolding paradigm
with T blocks for BasisNet, where each block corresponds
to one iterate of updates in Algorithm 1. Since it is the last
iterate that determines the output result, the loss function for
training is based on fZ({Xk}) associated with the last block:

Loss = −
K∑

k=1

tr
(
(F

(T )
k )∗GX

(T )
k + (X

(T )
k )∗G∗F

(T )
k

− (X
(T )
k )∗G∗E(T )GX

(T )
k

)
. (9)

Moreover, the lower part of Fig. 1 shows how to generate G
with the CSI as input. We extract features from the CSI tensor
through the convolutional layers, and then decide G based
on these features through the fully connected layer. At the
training stage, we tune the kernels of the convolutional layers
and the link weights of the fully connected layer.

5. SIMULATION RESULTS

We generate channels by the QuaDRiGa simulator [12] for
the 3GPP TR 38.901 UMa LOS scenario at 6.7 GHz. The
receivers are randomly distributed within a 500m × 500m
square area, with the BS deployed at the center. Let P = 20

dBm and η = −80 dBm. We assume by default that d = 2,
M = 128, N = 4, and K = 16. Set L = Kd.

As shown in Fig. 2, it takes about half day time for Al-
gorithm 1 to finish the training session to obtain G. Observe
from Fig. 3 that the proposed algorithm achieves similar per-
formance to that of WMMSE [2] and RWMMSE [5]. Accord-
ing to Fig. 4, we see that RWMMSE and our algorithm are
much more efficient than WMMSE when K is small. When
K becomes large, then this efficiency advantage shrinks, but
our algorithm still runs fastest. Note that RWMMSE is even
slower than WMMSE when K = 40; this result shows the
limitation of RWMMSE as stated in Section 3. Moreover, we
observe from Fig. 5 and Fig. 6 that the proposed algorithm
enhances the sum-rate objective much more efficiently than
WMMSE, either in terms of the number of iterations or in
terms of running time. Lastly, we plot the sum rate and the
running time of Algorithm 1 with respect to different values
of L. When L = 128 without any dimensionality reduction,
our algorithm and WMMSE are similar. When L is reduced
to 64, the running time of our algorithm drops sharply but the
sum-rate metric is barely impacted.

6. CONCLUSION

This work concerns the high-dimension wireless beamform-
ing problem, with two main results. First, we analyze the fun-
damental limit of dimensionality reduction for the beamform-
ing matrices. Second, we devise a basis learning approach to
the practical implementation of this dimensionality reduction.
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