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Abstract—This work proposes a novel upper bound on outage
probability for the incremental redundancy hybrid automatic
repeat request (IR-HARQ) protocol over block fading channels.
The new bound is much tighter than the classical bound due
to Laneman, especially when the transmit power is limited as is
often the case in the Internet of Things (IoT). We demonstrate
the practical use of this new bound by showing that it enables a
geometric programming approach to power adaptation for IR-
HARQ. Because the new bound approximates the outage prob-
ability much more exactly, the resulting new power adaptation
scheme significantly outperforms those existing methods based
on the classical bound.

I. INTRODUCTION

There has been a revival of research interests in hybrid
automatic repeat request (HARQ) due to the key role it plays
in enabling ultrareliable communications for the Internet of
Things (IoT). It is an urgent need to improve the conventional
HARQ protocol to account for the low-energy requirement
for the IoT devices. Aiming to enhance the energy efficiency
of ultrareliable communications, this paper proposes a power
optimization strategy for incremental redundancy HARQ, i.e.,
IR-HARQ, by means of a novel outage probability bounding
technique that is much tighter than the existing ones.

More specifically, we seek the optimal power allocation
across the transmission rounds of IR-HARQ over single-input
multiple-output (SIMO) channels given the channel distribu-
tion, in order to minimize the expected energy consumption
under the target rate and the target outage probability. This
power adaptation problem stems from the energy-reliability
tradeoff: we would reduce transmit power for the energy
saving purpose, but on the other hand higher transmit power
gives higher reliability of transmission (i.e., lower outage
probability). It is numerically difficult to address the power
adaptation problem directly due to the complicated form of the
outage probability—which consists of successive convolutions
with the power variables.

Power adaptation for HARQ, either of the incremental
redundancy type or of the Chase combining type, is extensively
studied in the literature. Regardless of the specific problem
setting, a common central issue is how to cope with the outage
probability function. An early work [1] considers the relay
channel. Its main idea is to discretize the outage probability
function by assuming discrete power values so that dynamic
programming (DP) starts to apply. For the relay channel with
continuous power, [2] suggests using a classical bound on

outage probability from [3] to approximate the original prob-
lem as a geometric programming (GP) problem. The outage
probability bound in [3] also forms the building block of many
other works in this area. For example, [4] optimizes power
across the different transmission rounds of IR-HARQ by the
classical bound, showing that its power strategy outperforms
the conventional equal power allocation significantly. This
performance gain is also verified in the power-limited regime
in [5]. A further step is taken in [6], [7] to find the closed-form
solution of the GP problem. Moreover, [8] extends the classical
bound in [3] to the multi-antenna case, while [9] extends to
the multi-bit feedback case. Differing from the above works,
[10] approximates the outage probability by Chernoff bound.
However, this method works only when all the transmission
rounds of HARQ use equal power level.

Roughly speaking, the bound in [3] is obtained by letting
the power variable be infinitely large in part of the outage
probability function. As a consequence, the classical bound
would significantly overestimate outage probability when the
transmit power is limited in practice, so that its solution can
incur much higher energy consumption than is necessary to
attain the target outage probability. To remedy this error, the
recent work [11] proposes incorporating the practical power
constraint into the outage probability bound. We explore this
direction further. The paper shows that the proposed outage
probability bound encompasses the existing bounds in [3],
[11] as two special cases, and is strictly tighter than them.
In aid of the new bound, we convert the power adaptation
problem to a GP formulation. In contrast to the existing GP
approach based on the classical bound in [3], the new method
based on the improved bound not only yields remarkably lower
energy consumption, it can also accommodate much stricter
requirements for ultrareliable communications.

II. CHANNEL MODEL

Suppose the transmitter has a single antenna and the receiver
has M ≥ 1 antennas. The SIMO channel hn ∈ CM has
bandwidth W and varies from block to block in an i.i.d.
fashion, where n = 1, . . . , N is the block index, namely block
fading channel. We model each hn as

hn =
√
βgn, (1)

where the pathloss β > 0 is fixed and the Rayleigh fading
gn ∼ CN (0, IM ) is an i.i.d. Gaussian random vector. Let pn



be the transmit power in block n and let σ2 be the background
noise power. By coherent combining at the receiver side, we
can achieve the following data rate rn in block n:

rn =W log2

(
1 +
‖hn‖2pn

σ2

)
. (2)

If the block duration equals L, then at most rnL message bits
can be conveyed in the nth block.

The transmitter aims to reliably send a t-bit message to
the receiver by IR-HARQ. In principle, IR-HARQ allows the
mutual information to be accumulated over time, i.e., the total
number of decodable bits after n blocks is given by

∑n
i=1 riL.

An outage takes place in block n if the accumulated mutual
information

∑n
i=1 riL is below the target message size t, so

the outage probability of block n can be computed as

Qn = Pr

[
n∑
i=1

riL < t

]
. (3)

The retransmission process of IR-HARQ works as follows.
After each round of transmission, the receiver sends back
NACK/ACK signal indicating whether it has successfully re-
ceived the message. If the feedback is NACK, then the transmit-
ter continues to the next block; otherwise, the retransmission
process finishes. In particular, the process must terminate
after the final block N , so the ultimate outage probability is
determined by QN . Consequently, the expected value of the
total energy consumption across the N blocks is given by

E = p1L+

N∑
n=2

pnLQn−1, (4)

where the first term does not contain the outage probability
because the initial block is always used. Likewise, the expected
overall latency is given by

D = L+

N∑
n=2

LQn−1. (5)

Moreover, we use ε, δ, and P to denote the constraints on the
ultimate outage probability, the overall latency, and the trans-
mit power, respectively. We seek the optimal power choice
(p1, . . . , pN ) that minimizes the expected energy consumption
under the above constraints, i.e.,

minimize
(p1,...,pN )

E (6a)

subject to QN ≤ ε, (6b)
D ≤ δ, (6c)
0 ≤ pn ≤ P. (6d)

The full channel information {hn} is unknown to the transmit-
ter. We assume that only the channel distribution is available.

III. POWER ADAPTATION BY BOUNDING Qn

A. Actual Outage Probability

Recognize 2‖gn‖2 as a chi-squared random variable with M
degrees of freedom, and thus the probability density function

(PDF) of ‖hn‖2 = β/2 · 2‖gn‖2 can be obtained as

f‖hn‖2(x) =
xM−1e−x/β

(M − 1)!βM
. (7)

Extending the above PDF to (2) gives the PDF of rn:

frn(x) =

(
σ2

β

)M
2x/W (2x/W − 1)M−1 ln 2

(M − 1)!WpMn
·J(pn), (8)

where

J(pn) = exp

(
−σ

2(2x/W − 1)

βpn

)
. (9)

We now rewrite the outage probability Qn in (3) in terms of
the PDF frn(x), i.e.,

Qn = Pr

[
n∑
i=1

ri < t/L

]
(10a)

=

∫ t/L

0

(
fr1(x) ∗ fr2(x) ∗ · · · ∗ frn(x)

)
(τ)dτ (10b)

=

((∫ x

0

fr1(z)dz

)
∗ fr2(x) ∗ · · · ∗ frn(x)

)
(t/L),

(10c)

where (10b) follows by the fact that the PDF of the sum of in-
dependent random variables equals the successive convolutions
of their respective PDFs, while (10c) follows by the identity
d
dz

(
u(x) ∗ v(x)

)
(z) =

(
d
dxu(x) ∗ v(x)

)
(z).

Substituting (10c) into (6), we rewrite the problem explicitly
in terms of the power variables (p1, . . . , pN ). It is difficult to
optimize (p1, . . . , pN ) directly because they are nested in the
successive convolutions inside Qn. We propose to remove the
power variables from the successive convolutions by relaxing
Qn properly, as discussed in the next subsection.

B. Proposed Outage Probability Bound

We start with a new upper bound on the PDF frn(x).
Proposition 1: For any auxiliary variable α ∈ R, the PDF

frn(x) in (8) is upper bounded by

f̂rn(x) =

(
σ2

β

)M
2x/W (2x/W − 1)M−1 ln 2

(M − 1)!WpMn
· Ĵ(pn|α),

(11)
where

Ĵ(pn|α) = pαn · max
0≤yn≤P

{
1

yαn
exp

(
− (2x/W − 1)σ2

βyn

)}
.

(12)
Proof: Notice that Ĵ(pn|α) reduces to J(pn) when yn is

suboptimally set to pn, regardless of the choice of α. Then it
immediately follows that frn(x) ≤ f̂rn(x).

Remark 1: The main idea behind Proposition 1 is to use a
power function γ · pαn (γ > 0) to bound J(pn) from above.

Remark 2: The optimal yn in (12) is given by

y?n = min

{
(2x/W − 1)σ2

αβ
, P

}
. (13)

Moreover, we will discuss how to tune the auxiliary variable
α in Remark 3 later on. Because the outage probability Qn
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Fig. 1. The exponential function J(pn) in (9) and its upper bound Ĵ(pn|α)
in (12) with the different values of the auxiliary variable α.

increases with frn(x) monotonically, we can further construct
an upper bound on Qn by replacing frn(x) with f̂rn(x) in
(10), as stated in the following proposition.

Proposition 2: For any auxiliary variable α ∈ R, the outage
probability Qn in (3) is upper bounded by

Q̂n =

((∫ x

0

f̂r1(z)dz

)
∗ f̂r2(x) ∗ · · · ∗ f̂rn(x)

)
(t/L)

= An

n∏
i=1

pα−Mi , (14)

where

An =

(
σ2M ln 2

(M − 1)!WβM

)n (
ϕ(x) ∗ η(x) ∗ · · · ∗ η(x)︸ ︷︷ ︸

n−1

)
(t/L)

(15)
along with

η(x) = 2x/W (2x/W − 1)M−1

· max
0≤yn≤P

{
1

yαn
exp

(
−σ

2(2x/W − 1)

βyn

)}
(16)

and
ϕ(x) =

∫ x

0

η(z)dz. (17)

Note that the parameter An is independent of (p1, . . . , pN ).
Remark 3: The choice of α in (14) can be restricted to

the interval [0,M). We let α < M in order to render Q̂n
a decreasing function of the power variables (to mimic the
behavior of the actual outage probability); we let α ≥ 0
because Q̂n with α ≥ 0 is strictly tighter than that with α < 0.

C. New Bound vs. Existing Bounds

We further explore the relationship between the proposed
outage probability bound and the existing bounds in [3], [11],
showing that the new bound Q̂n in (14) is strictly tighter in
general.
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Fig. 2. Various upper bounds on outage probability Qn with optimal α when
M = 4, N = 5, β = 1, σ = 1, and pn = 0.8 for each n = 1, . . . , N .

First, note that y?n in (13) equals P when α tends to
zero, and hence Ĵ(pn|0) = exp

(
− (2x/W−1)σ2

βP

)
; it is worth

mentioning that Ĵ(pn|0) is a constant function independent of
pn. Substituting the PDF bound Ĵ(pn|0) in (11) and (14) yields
a suboptimal version of Q̂n, which is exactly the upper bound
from [11]. As compared to the constant function Ĵ(pn|0), the
proposed PDF bound Ĵ(pn|α) is an exponential function with
higher flexibility, so it can approximate J(pn) more exactly,
as illustrated in Fig. 1.

Moreover, we could obtain Ĵ(pn|0) = 1 by assuming that
β → ∞. The resulting Q̂n in (14) then boils down to the
classical outage probability bound in [3]. Because the value
of Ĵ(pn|0) increases with β, the classical bound [3] is looser.

D. Application to Power Adaptation

Using the new upper bound Q̂n to approximate the outage
probability Qn, we convert (6) to the following GP problem

minimize
(p1,...,pN )

p1 +

N∑
n=2

(
An−1pn

n−1∏
i=1

pα−Mi

)
(18a)

subject to AN

N∏
i=1

pα−Mi ≤ ε (18b)

N∑
n=2

(
An−1pn

n−1∏
i=1

pα−Mi

)
≤ δ − L

L
(18c)

0 ≤ pn ≤ P, (18d)

which can be solved efficiently by the standard convex op-
timization technique. Furthermore, in light of Remark 3, we
suggest searching through [0,M) for the optimal α; we solve
the GP problem (18) with respect to every possible value of α
and choose the best. It is worthwhile to point out that the power
solution (p?1, . . . , p

?
N ) of the above GP problem is guaranteed

to satisfy the constraints in the original problem (6) since the
outage probability is bounded from above.



It remains to compute the parameters An in the above GP
problem according to (15). In practice, we would partition the
range (0, t/L] into many slots, say K slots, so that the con-
tinuous convolutions in (15) are cast to numerically tractable
discrete convolutions. A naive idea is to compute these discrete
convolutions successively. By fast Fourier transform, each
discrete convolution requires a computational complexity of
O(K logK), and it takes the complexity O(NK logK) in
total to obtain (A1, . . . , AN ).

It turns out that An can be acquired in a more efficient
way. As a key observation, the successive convolutions in (15),
i.e., ϕ(x) ∗ η(x) ∗ · · · ∗ η(x), have the last n − 1 functions
be the same; this special structure can be utilized to reduce
complexity. Recall that the essence of successive convolutions
is to try out all possible allocations of the K slots among the n
functions and then add up the corresponding function products
ϕ(x)η(x) · · · η(x). Since the last n−1 functions are identical,
some of these allocations would yield the same function
product. For instance, if we use the tuple (K1,K2,K3,K4)
to denote the allocation of 100 slots among 4 functions, then
the following allocations (94, 1, 2, 3), (94, 1, 3, 2), (94, 2, 1, 3),
(94, 2, 3, 1), (94, 3, 1, 2), and (94, 3, 2, 1) yield the same func-
tion product. The aforementioned naive approach however
does not take this repetition into account, and just calculates
the same function product 6 times. Clearly, it suffices to
consider only one of these allocations; this is the rationale
behind the proposed fast way of computing (A1, . . . , AN ).

We now illustrate our method through a toy example,
assuming that K = 5 and N = 3. Consider such binary tree:
each internal node is denoted as (K1,K2,K3 | k0,m), where
K1,K2,K3, k0,m are all nonnegative integers and satisfy
K1 + K2 + K3 = K − k0; each leaf node is denoted as
(K1,K2,K3) with K1 +K2 +K3 = K. This binary tree is
recursively built according to the following three rules:

1) The root is (0, 0, 0 |K,N);
2) Each internal node (K1,K2,K3 | k0,m) has left child

(K1,K2,K3 | k0,m− 1) if m > 1;
3) Each internal node (K1,K2,K3 | k0,m) has right child

if k0 ≥ m. The right child is (K ′1,K
′
2,K

′
3 | k0 −m,m)

if k0 > m > 1, is (K ′1,K
′
2,K

′
3) if k0 = m, and is

(K1 + k0,K2,K3) if m = 1, where K ′i = Ki + 1 for
i ≤ m and K ′i = Ki otherwise.

Intuitively, the left child assumes that the remaining k0 slots
are not allocated to the mth function, while the right child
assumes that at least one slot is allocated to the first m
functions each. Fig. 3 displays the resulting binary tree.

Each leaf node shows a particular allocation that represents
a group of allocations of the same combination, e.g., the
rightmost leaf node (2, 2, 1) in Fig. 3 represents the group
{(2, 2, 1), (2, 1, 2), (1, 2, 2)}. At each leaf node, we try out
all possible values for K1, then compute the corresponding
function product ϕ(K1τ)η(K2τ) · · · η(Knτ) with respect to
each possible value of K1 in the group, where τ = t

LK .
For example, the leaf node (2, 2, 1) corresponds to the group
{(2, 2, 1), (2, 1, 2), (1, 2, 2)}, so the possible values of K1

are {1, 2}. We then compute the function product respec-

Fig. 3. The binary tree for computing AN when N = 3 and K = 5, where
∅ represents the nil nodes.

tively for (2, 2, 1) and (1, 2, 2); because two allocations have
K1 = 2 and one allocation has K1 = 1 in the group, the
sum of function products at the leaf node (2, 2, 1) is given
by 2ϕ(2τ)η(2τ)η(τ) + ϕ(τ)η(2τ)η(2τ). We further add up
function products across all the leaf nodes to obtain the overall
successive convolutions. It can be shown that the overall
complexity of finding (A1, . . . , AN ) is O(N3K). Because N
is usually a small number in practice (e.g., N = 4 in 5G NR
[12]), the complexity is dominated by K. Thus, the above way
of computing (A1, . . . , AN ) runs in linear time.

IV. SIMULATION RESULTS

We now validate the performance gain of the proposed
power adaptation algorithm via simulations. Assume that the
size of message t = 4 bits, the number of receive antennas
M = 4, the maximum number of transmission rounds N = 5,
the outage probability constraint ε = 10−5. Without loss of
generality, we normalize the background noise σ2 and the
bandwidth W to 1. Moreover, the latency in our case is
measured in terms of block duration.

Fig. 4 shows the energy consumption vs. the pathloss β for
the different power adaptation algorithms. It can be seen that
the GP method based on the proposed bound provides more
energy-efficient transmission. For instance, when β = 6, the
energy consumption of the proposed method is less than half
of that of the classical bound based method, and is about 60%
lower than that of the maximum power scheme. Fig. 5 shows
how the optimal α changes with β. It suggests that we need
to raise α when the channel condition becomes worse.

Fig. 6 shows the energy-latency tradeoff. Observe that
the proposed algorithm requires the lowest energy E under
any latency constraint δ. The new bound allows more than
50% energy cutoff as compared to the classical bound in
[3]. Observe also that the new bound can reach smaller δ
values than the classical bound, so it can accommodate stricter
requirements on delay. Finally, the power allocations displayed
in Fig. 7 show that the new algorithm achieves more energy-
efficient transmission by putting higher power in the last few
transmissions rather than the initial transmission.
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Fig. 4. Energy E vs. pathloss β when the latency constraint δ = 2.
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Fig. 5. Optimal α vs. pathloss β under different latency constraints.

V. CONCLUSION

This work proposes a novel upper bound on outage proba-
bility for IR-HARQ over SIMO block fading channels, which
is much tighter than the existing bounds. We further use the
new bound to facilitate power adaptation. The optimized power
allocation by GP and the new bound attains much higher
energy efficiency in ultrareliable communications.
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