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Abstract—This work pursues an efficient strategy of designing
passive beamformer for intelligent reflecting surface (IRS) in
order to maximize the overall channel strength. In particular,
the choice of phase shift for each reflective element is restricted
to K ≥ 2 discrete values. Although the resulting discrete
beamforming problem is believed to be NP-hard in some prior
works, the paper shows that the global optimum of the binary
case with K = 2 can actually be achieved in quadratic time.
For a general K-ary beamforming problem with K > 2, the
state-of-the-art polynomial time algorithm is to greedily project
the relaxed solution (which is trivial) to the closest point in
the constraint set. However, as shown in this paper, this greedy
method is unbounded in the sense that its performance can be
arbitrarily bad. In contrast, we propose a linear time algorithm
that is capable of providing a near-optimal solution with an
approximation ratio of (1 + cos(π/K))/2, i.e., at least 75% of
the global optimum can be reached when K ≥ 3. Furthermore,
inspired by the so-called RFocus method in [1], we develop a
statistic implementation of the above approximation algorithm
in the absence of channel state information (CSI).

I. INTRODUCTION

Intelligent reflecting surface (IRS) is an emerging wireless
device [2], [3] that uses a large array of passive “mirrors”—
reflective elements to spatially concentrate the impinging radio
waves on the intended receiver, thereby enhancing reliability
and energy efficiency of wireless transmission. This work aims
to maximize the overall channel strength toward the receiver
by coordinating phase responses across the reflective elements,
namely the IRS beamforming.

From a practical standpoint, we impose discrete limitations
on the IRS beamformer such that the choice for the phase
shift induced by each reflective element is restricted to K ≥ 2
discrete values. We begin with the binary case wherein every
phase shift is either 0 or π. This problem deceptively appears
NP-hard because of its discrete constraint [2], [4], [5]. To
clarify this misconception, we propose an exact algorithm that
is capable of reaching the global optimum in quadratic time.
For a general discrete beamforming problem with K > 2,
we propose a linear time algorithm with a provable approxi-
mation ratio, whereas the greedy method [1], [6] can end up
with arbitrarily bad performance. Furthermore, the proposed
approximation algorithm can be carried out even when channel
state information (CSI) is not available.

While many developments [7]–[9] have taken place in the
area of channel estimation for IRS (although the recent work

[10] argues that we could skip channel acquisition by means of
machine learning), a large group of other works examine the
beamforming aspect assuming that CSI has been obtained. By
recognizing IRS as a multiple-passive-antenna equipment [1],
a line of existing researches assume that the phase responses
of reflective elements can be chosen arbitrarily, thus extending
those conventional continuous beamforming algorithms for
multiple-input multiple-output (MIMO) transmission to the
IRS setting, e.g., singular value decomposition [11], semidef-
inite programming [12], [13], fractional programming [14],
[15], and successive convex approximation [16]. Although
the above works have shown that considerable gains can be
achieved via continuous beamforming, the practical implemen-
tations [1], [2] would typically restrict the choices of phase
shifts to a given set of discrete values, because of the hardware
limitation as well as the economic concerns. Aimed at the
global optimum of the discrete IRS beamforming, [17] and [5]
use the exhaustive search and the branch-and-bound algorithm,
respectively, both requiring exponential time.

In contrast, aimed at some reasonably good solution, the
two recent works [1], [2] suggest projecting the continuous
beamformer to the nearest discrete point in a greedy fashion.
Specifically, with the continuous beamformer optimally align-
ing all the channels in one direction, this greedy method in
[1], [2] for discrete beamforming would try to minimize the
angle between the direct channel and each individual reflected
channel. However, the paper demonstrates that the greedy
approach in [1], [2] is unbounded in that we cannot find a
positive constant to bound below the ratio between the solution
of the greedy method and the global optimum.(Actually, the
near-optimality claim in [1] is problematic.) In contrast, the
proposed method guarantees a strictly positive approximation
ratio of (1 + cos(π/K))/2. But the idea of implementing the
proposed approximation algorithm statistically without CSI
stems from the so-called RFocus method in [1].

II. SYSTEM MODEL

Consider a pair of transmitter and receiver, along with an
IRS deployed to facilitate the wireless transmission between
them. The IRS consists of N passive reflective elements, each
introducing an independent reflected path from the transmitter
toward the receiver. We use h0 ∈ C to denote the channel of
the direct path, and hn ∈ C the channel of the nth reflected



path for any n = 1, . . . , N . These channels can be alternatively
expressed in an exponential form, i.e.,

hn = βne
jαn , n = 0, 1, . . . , N, (1)

with the modulus βn > 0 and the phase αn ∈ [0, 2π). These
channels are all fixed throughout our discussion.

Let θn ∈ [0, 2π] be the phase shift induced by the nth reflec-
tive element in its incident radio wave, so the overall channel
strength from the transmitter to the receiver can be computed
as a function of the beamforming vector θ = (θ1, . . . , θN ):

f(θ) =

∣∣∣∣∣h0 +

N∑
n=1

hne
jθn

∣∣∣∣∣
2

. (2)

Furthermore, we assume that every phase shift θn must be
selected from a uniform discrete set

ΦK =
{

0, ω, · · · , (K − 1)ω
}
, (3)

where
ω =

2π

K
(4)

for a positive integer K ≥ 2. We seek the optimal beamformer
θ to maximize the overall channel magnitude, i.e.,

maximize
θ

f(θ) (5a)

subject to θn ∈ ΦK , n = 1, . . . , N. (5b)

The above problem is difficult to solve in general because
of the discrete constraint. Besides, the lack of the CSI
{h0, h1, . . . , hN} in practice would cause another challenge
of the discrete beamforming design for IRS. In the rest of the
paper, we first focus on solving for θ with perfect CSI, then
discuss how to deal with the absence of CSI in Section V.

III. BINARY BEAMFORMING WHEN K = 2

As the number of phase-shift candidates K tends to infinity,
the discrete beamforming problem in (5) reduces to a contin-
uous problem for which the solution is trivial:

θ̃n = α0 − αn, n = 1, . . . , N. (6)

It is tempting to think that the difficulty of the problem
decreases with K. In particular, one may believe that the
binary case with K = 2 is the hardest and even NP-hard.

However, in this section we present a counter-intuitive result
that the binary beamforming problem is polynomial time
solvable, as stated in the following proposition.

Proposition 1 (Globally Optimal binary Beamforming): The
binary beamforming problem in (5) with K = 2 can be
optimally solved in O(N2) time.

Proof: Note that each θn ∈ {0, π} when K = 2. Intro-
duce a binary vector x = (1, x1, . . . , xN )T ∈ {−1, 1}N+1,
where xn = cos(θn) for n = 1, . . . , N . Using x to substitute
θ in f(θ) cast the objective function to

f(x) = xTCx, (7)

where C =
[
cij
]

is an (N+1)×(N+1) real symmetric matrix
with each entry cij = <

{
hihj

}
, i = 0, . . . , N , j = 0, . . . , N .

Observe that rank(C) ≤ 2. We shall consider the optimal x?

for the rank one case and the rank two case respectively, then
recover the optimal phase shift as θ?n = arccos(x?n).

If C is rank one, then it can be decomposed as C = λvvT

with a unique positive eigenvalue λ > 0 and the corresponding
eigenvector v = (v0, v1, . . . , vN )T ∈ RN+1. To maximize
f(x) = λxTvvTx, we simply choose xn ∈ {−1, 1} to make
xnvn have the same sign as x0v0, i.e., x?n = sgn(v0vn).

If C is rank two, we have the decomposition C = V TV
where V ∈ R2×(N+1) is row full rank. With the jth column
of V denoted by vj ∈ R2, j = 1, . . . , N+1, we narrow down
the search space of x to

X =
{
x
∣∣∣∃ zj ∈ R2 s.t. zTj vj = sgn(xj−1),

∀j = 1, . . . , N + 1
}
. (8)

According to a zonotype argument in [18], the above set X
must contain the optimal x?. Most importantly, |X | = 2N so
x? can be found in O(N) time.

Moreover, it takes O(N2) time to compute C and X , so the
binary beamforming problem is globally solvable in O(N2)
for either rank one or rank two case.

In contrast, the greedy method in [1], [6] simply rounds the
relaxed solution θ̃ in (6) to the closest point in ΦK , i.e.,

θ′n = arg min
θn∈ΦK

∣∣θn − θ̃n∣∣. (9)

We use the following example to show that the greedy method
in [1], [6] can lead to arbitrarily bad performance.

Example 1: For the reflected channels, assume that β1 =
β2 = · · · = βN and assume that half of them have the phase
αn = α0−δ+π/2 while the other half have αn = α0+δ−π/2
given some 0 < δ < π/2, so the greedy method sets every θ′n
to 0. As a result, f(θ′)→ 0 as β0 → 0 and δ → 0.

IV. GENERAL K-ARY BEAMFORMING

The main results of this section are twofold: an exact
algorithm that is far more efficient than exhaustive search, and
a linear time algorithm with guaranteed performance.

A. Exact Algorithm via Sectorization

We propose a sectorizing scheme that can reduce the size of
the search space on θ from KN to 2N . Consider the following
four sectors around h0 on the complex plane:

Si =

{
x ∈ C

∣∣∣∣ α0+
(2− i)ω

2
≤ arg(x) < α0+

(3− i)ω
2

}
,

i = 1, 2, 3, 4. (10)

Fig. 1 illustrates the above sectorization. We use h? to denote
the overall channel corresponding to an optimal θ?, i.e.,

h?Σ = h0 +

N∑
n=1

hne
jθ?n . (11)



 

 

 

 

 

 

 

 

Fig. 1. Four sectors S1 to S4. In the proof of Proposition 3, we rotate µ1
clockwise by an angle of ω, then further combine it with µ3 to obtain µ13.

Although the optimal solution of θ may not be unique, at
least one θ? has its h?Σ close to h0, as stated in the following
lemma.

Lemma 1: There exists at least one optimal θ? that renders
overall channel h?Σ fall in either Sector S2 or Sector S3.

With hnejθ
?
n restricted to S2 and S3, we can shrink the range

of possible solutions for θ as in the following proposition.
Proposition 2: Given a subset A ⊆ S1 ∪ S2 ∪ S3 ∪ S4, the

function Θ(A) outputs a subset of ΦNK as

Θ(A) =
{
θ ∈ ΦNK

∣∣ hnejθn ∈ A, ∀n = 1, . . . , N
}
. (12)

For the problem in (5), at least one optimal solution θ? is
contained in either Θ(S1 ∪ S2 ∪ S3) or Θ(S2 ∪ S3 ∪ S4).

Proof: If h?Σ ∈ S2, then the optimal θ?n would rotate hn
to the closest possible position to S2, so hnejθ

?
n ∈ Θ(S1∪S2∪

S3). Likewise, hnejθ
?
n must be contained in Θ(S2 ∪ S3 ∪ S4)

if h?Σ ∈ S3. The proof is then completed because h?Σ must
reside in either S2 or S3 according to Lemma 1.

In light of the above proposition, we decide the solution as

θ? = arg max
θ∈Ω3

f(θ), (13)

where the search space Ω3 is given by

Ω3 = Θ(S1 ∪ S2 ∪ S3) ∪Θ(S2 ∪ S3 ∪ S4). (14)

Observe that |Ω3| = 2N which is much smaller than original
search space size of KN .

B. Efficient Approximation Algorithm

The central premise behind the above exact algorithm is
that the set of reflected channels {hnejθ

?
n} under optimal

beamforming can span at most three consecutive sectors. This
causes the search space Ω3 to be exponentially large. We wish
to further narrow down the search space of θ?. A simple idea
is to confine the span of {hnejθ

?
n} to just two consecutive

sectors, so the search space Ω3 becomes

Ω2 = Θ(S1 ∪ S2) ∪Θ(S2 ∪ S3) ∪Θ(S3 ∪ S4). (15)

We then propose searching through Ω2, i.e.,

θ̂ = arg max
θ∈Ω2

f(θ). (16)

The above search is superfast since |Ω2| ≤ 3. Besides, it
takes O(N) time to compute the search space Ω2, the overall
algorithm runs in O(N) time.

We may miss the optimal solution θ? when switching
from Ω3 to Ω2, but the following proposition shows that the
suboptimal solution by Ω2 is close to the global optimum.

Proposition 3 (Near-Optimal K-Ary Beamforming): A gen-
eral discrete beamforming problem in (5) with K ≥ 2 can be
approximately solved in O(N) time, such that the solution θ̂
and the global optimum θ? satisfy

1 + cos(π/K)

2
f(θ?) ≤ f(θ̂) ≤ f(θ?). (17)

Proof: Without loss of generality, assume that an optimal
overall channel h?Σ lies in S2. We partition h?Σ into three terms:

h?Σ = µ1 + µ2 + µ3, (18)

where µi refers to the sum of channels (either direct or
reflected) in sector Si. Let

µ13 = µ1e
−jω + µ3 (19)

as illustrated in Fig. 1. We then bound f(θ?) as

f(θ?) =
∣∣µ1 + µ2 + µ3

∣∣2
≤
(∣∣µ1 + µ3

∣∣+
∣∣µ2

∣∣)2
≤
(∣∣µ13

∣∣+
∣∣µ2

∣∣)2. (20)

In the meanwhile, since h?Σ is assumed to be in S2, the solution
θ̂ ∈ Ω2 is contained in either Θ(S1 ∪S2) or Θ(S2 ∪S3), and
hence f(θ̂) can be bounded as

f(θ̂) = max
{∣∣µ1e

−jω + µ2 + µ3

∣∣2, ∣∣µ1 + µ2 + µ3e
jω
∣∣2}

= max
{∣∣µ13 + µ2

∣∣2, ∣∣µ13e
jω + µ2

∣∣2}
≥ |µ2|2 + |µ13|2 + 2

∣∣µ2µ13

∣∣ cos(ω/2), (21)

where the last step follows since max{|µ13 +µ2|2, |µ13e
jω +

µ2|2} is minimized when µ2 is a bisector of the angle between
µ13 and µ13e

jω.
We introduce an auxiliary variable

λ =
|µ13|
|µ2|

. (22)

Taken together, the bounds in (20) and (21) yield

f(θ?)

f(θ̂)
≤ (λ+ 1)2

λ2 + 1 + 2λ cos(ω/2)
(23a)

≤ 2

1 + cos(ω/2)
(23b)

with the second equality if and only if λ = 1. Finally, plugging
ω = 2π/K into (23b) verifies the approximation ratio.

Corollary 1: As K → ∞, the approximation algorithm in
(16) reduces to the relaxed solution in (6) and f(θ̂) = f(θ?).



 

 

 

 

 

 

Fig. 2. The worst-case scenario of the greedy method. If µ1 = 0 and |µ2| =
|µ3|, the overall channel stength tends to 4|µ2|2 cos(π/K) as the angle γ →
0 and β0 → 0, while the global optimum tends to 4|µ2|2.

C. Other Approximation Algorithms

The aforementioned greedy method in (9) can be directly
applied for the general K-ary beamforming as in [1], [6].

Proposition 4: The greedy method in (9) produces a solution
θ′ that satisfies

cos2(π/K)f(θ?) ≤ f(θ′) ≤ f(θ?). (24)

Proof: Clearly, f(θ?) ≤
(∑N

n=0 βn
)2

. By projecting
each hne

jθn onto h0, we obtain a lower bound as f(θ′) ≥(
h0 +

∑N
n=1 βn cos(θ′n − θ̃n)

)2 ≥ (∑N
n=0 βn cos(π/K)

)2
,

thus establishing the approximation ratio of cos2(π/K).
It is worth pointing out that the lower bound in (24) is sharp

as illustated in Fig. 2.
Another approach is to rewrite the objective function f(θ)

as f(x) = xHCx with C < 0; this reformulation is akin
to the binary case in (7) except that x and C are now both
complex-valued. This complex K-ary quadratic program (QP)
is approximately solvable by the semidefinite relaxation (SDR)
technique [19], [20], as stated in the following proposition.

Proposition 5 (SDR Method [19], [20]): The discrete beam-
forming problem in (5) can be recognized as a complex K-ary
QP, and can be further recast to a convex optimization problem
by the SDR method. The resulting solution θ′′ satisfies

(k sin(π/K))2)

4π
f(θ?) ≤ f(θ′′) ≤ f(θ?). (25)

We compare the approximation ratios of the various algo-
rithms in Fig. 3. It shows that the proposed algorithm provides
better approximation accuracy than the greedy method and the
SDR method given any value of K ≥ 2.

V. BEAMFORMING WITHOUT CSI
The discussion in the paper thus far assumes perfect CSI.

We now provide a blind beamforming scheme that is capable
of approaching the approximation algorithm in the previous
section asymptotically when CSI is not available.

We start by considering how to implement the greedy
method in (9) in the absence of CSI. The main idea follows
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Fig. 3. The approximation ratios of various algorithms.

[1] closely. Let us fix the transmit signal at 1 and randomly
choose each phase shift θn from ΦK in an i.i.d. fashion. With
the thermal noise z ∼ CN (0, σ2

0), the received signal y is

y =

(
h0 +

N∑
n=1

hne
jθn

)
· 1 + z. (26)

Every tuple of (θ, z, y) is referred to as a random sample in
which only θ and y are known. For each ϑ ∈ ΦK and each
n = 1, . . . , N , evaluate the sample mean of the received signal
power |y|2 conditioned on θn = ϑ, denoted by

Qn(ϑ) = Eθ,z
[
|y|2 | θn = ϑ

]
, n = 1, . . . , N. (27)

It is a natural idea to decide the phase shift θn according to the
“average” performance Qn(ϑ); this choice of θn is denoted by

ψ23,n = arg max
ϑ∈ΦK

Qn(ϑ), n = 1, . . . , N. (28)

It turns out that the above scheme is asymptotically equivalent
to the greedy method as shown in the following proposition.

Proposition 6 (Greedy Method Without CSI): As the number
of random samples T →∞ and the number of reflective ele-
ments N →∞, the beamforming scheme in (28) approaches
the greedy method in (9).

Proof: We focus on showing that ψ23,n in (28) tends to
θ′n in (9). If θn has been fixed at ψ23,n while the rest phase
shifts θm are chosen randomly, then the reflected component∑
m6=n hne

jθn amounts to a Gaussian random variable of
CN (0, σ2

1) as T → ∞ and N → ∞, which is independent
of another Gaussian random variable z ∼ CN (0, σ2

0). With
the fixed component h0 + hne

jθn and the Gaussian random
component

∑
m 6=n hne

jθn +z, the received signal envelop |y|
has a Rician distribution, so the average power |y|2 can be
computed as |h0 + hne

jθn |2 + σ2
0 + σ2

1 . Clearly, the average
power is maximized when hnejθn is at the closest position to
h0, namely the greedy method.



Recall that the greedy method basically aims to rotate every
reflected channel to the inside of S2 ∪ S3. In contrast, the
proposed approximation algorithm additionally entails rotating
every reflected channel into S1 ∪ S2 and into S3 ∪ S4. These
two types of rotation can be readily performed if we can tell
which of {hnejψ23} lie in S3 under the greedy method.

Toward this end, we first compute

g0 = Eθ,z
[
y
]

(29)

and
gn = Eθ,z

[
y | θn = ψ23,n

]
, n = 1, . . . , N, (30)

then decide which of S2 and S3 each hnejψ23,n belongs to as

µn =

{
0 if Im

{
g0 − gn

}
< 0;

1 otherwise;
n = 1, . . . , N, (31)

where the indicator variable µn equals to 0 if hnejψ23,n ∈ S2

and equals to 1 if hnejψ23,n ∈ S3.
Thus, in order to render all the reflected channels in S1∪S2,

we simply rotate those hnejψ23,n with µn = 1 counterclock-
wise by an angle of ω, so the corresponding phase shift is

ψ12,n = ψ23,n + µnω, n = 1, . . . , N. (32)

Furthermore, the phase shifts that rotate the reflected channels
into S1 ∪ S2 are given by

ψ34,n = ψ12,n − ω, n = 1, . . . , N. (33)

Let ψ12 = (ψ12,1, . . . , ψ12,N ), and define ψ23 and ψ34

similarly. We propose to decide the beamformer as

ˆ̂
θ = arg max

ϑ∈{ψ12,ψ23,ψ34}
Ez
[
|y|2|θ = ϑ

]
. (34)

Clearly, the above beamforming method without CSI can
approach the approximation algorithm in Section IV asymp-
totically, as summarized in the following proposition.

Proposition 7 (Approximation Algorithm Without CSI): As
the number of random samples T → ∞ and the number of
reflective elements N → ∞, beamforming method in (34)
approaches the proposed approximation algorithm in (16).

VI. SIMULATION RESULTS

We now validate the performance of the proposed algo-
rithms in simulations. Following [6], we fix the transmit
power at 20 dBm, and assume that each pathloss component
βn = 10−3 · d−3.5 where the distance d = 100 meters in
our case. The background noise power σ2 is set to 10−9 mW.
Moreover, we assume Rayleigh fading by drawing the channel
phase variables (α0, α1, . . . , αN ) randomly from the uniform
distribution U [0, 2π) in an i.i.d. fashion.

Fig. 4 compares the average received signal power across
the worst 1% random trials of the binary beamforming case
when CSI is known precisely. We first remark that the global
optimum can always be obtained efficiently by the proposed
O(N)-time exact algorithm. Observe that the proposed ap-
proximation algorithm is quite close to the global optimum
achieved by the proposed exact algorithm given any value
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Fig. 4. The received signal power vs. the number of reflective elements when
K = 2 and CSI is known.

of N . The actual gap between them is even smaller than
the theoretical guarantee as suggested by the approximation
ratio. Observe also that the gap between the approximation
algorithm and the greedy method [1], [6] increases with the
number of reflective elements. In particular, when N = 300,
the approximation algorithm improves upon the greedy method
by more than 16%. Thus, we conclude that the proposed ap-
proximation algorithm is more suited for an IRS with massive
reflective elements. We further include a baseline algorithm
called random method—which tries out 100 random choices
of θ and uses the best one. The figure shows that taking 100
random samples for the random method is insufficient even if
we have only 50 reflective elements.

We now look at the cases where CSI is not available.
With respect to the binary beamforming problem, Fig. 5
compares the cumulative distribution functions (CDFs) of the
received signal power for the greedy method without CSI
and the proposed approximation algorithm without CSI in
Section V. It can be seen that the approximation algorithm
outperforms the greedy method especially in the low-percentile
regime, i.e., the approximation algorithm provides more robust
optimization against the worst-case scenario. Observe that both
of these algorithms have improved performance when the
number of random samples T is increased.

Furthermore, we plot the CDF curves of the two algorithms
without CSI in Fig. 6 with K = 4. It is worthwhile to remark
that the two algorithms with T = 100 actually become even
worse when K is raised from 2 to 4, as can be seen by
comparing Fig. 5 and Fig. 6. In principle, the larger K is, the
more sensitive the two algorithms are to the channel estimation
error. Thus, the insight we gain here is that increasing K does
not necessarily enhance the performance when the number of
random samples is limited. In contrast, when T is increased
to 1000, the algorithms with K = 4 start to outperform the
binary beamforming significantly. The figure also shows that
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Fig. 5. CDF of received signal power with K = 2 when CSI is unknown.

the proposed approximation algorithm is much better than the
greedy method when T = 1000, e.g., the received signal power
of the approximation algorithm is over 25% higher than that
of the greedy method at the 30th percentile.

VII. CONCLUSION

Despite the forbidding discrete constraints in the IRS beam-
forming problem, this work shows that the global optimum
can obtained in quadratic time when the constraint is binary.
For a general discrete beamforming problem, we propose
a linear time algorithm that has near-optimal performance
with guaranteed approximation accuracy, as compared to the
existing greedy method [1], [6] that can lead to arbitrarily
bad solution. We further propose a statistic implementation of
this algorithm without CSI. Simulation results show that the
proposed algorithms yield far more robust optimization than
the baseline methods.
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