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Abstract—Deep unfolding is a frontier machine learning tech-
nology that aims to mimic the behavior of an iterative algorithm
through deep neural network (DNN). This paper considers using
deep unfolding to recover and even improve the fast fractional
programming (FastFP) algorithm for optimizing the transmit
beamforming vectors in the massive multiple-input-multiple-
output (MIMO) networks. The FastFP algorithm is computation-
ally more efficient than the conventional fractional programming
(FP) method and the weighted minimum mean square error
(WMMSE) algorithm for two reasons: (i) it eliminates the large
matrix inversion; (ii) it linearizes the computation of the optimal
Lagrange multipliers for the power constraints. However, FastFP
is sensitive to the update stepsize in each iterate, yet the existing
choice of stepsize based on the matrix eigenvalues can incur
high complexity in the massive MIMO case. As such, this work
proposes tuning the stepsize via deep unfolding. In particular,
since the optimal stepsizes can vary from iterate to iterate,
deep unfolding is well suited for coordinating the stepsizes
across the different iterates. Numerical experiments show that
the proposed deep unfolding scheme is more aggressive than the
FastFP in choosing the stepsizes, and thereby yielding much faster
convergence aside from requiring much lower computational
complexity.

Index Terms—Deep unfolding, massive multiple-input-
multiple-output (MIMO) beamforming, weighted sum rates
maximization, fractional programming (FP).

I. INTRODUCTION

A fundamental problem of multiple-input-multiple-output
(MIMO) system design is to optimize the transmit beamform-
ers to maximize a weighted sum rates (WSR) throughout the
cellular networks, namely the WSR problem. The weighted
minimum mean square error (WMMSE) algorithm [1], [2]
and the fractional programming (FP) [3], [4] constitute two
popular approaches in this area. Because the two methods
are both iteratively structured, a natural idea is to learn their
behaviors via deep unfolding, as pursued extensively in [5]–
[12]. However, two main challenges arise when it comes
to the massive MIMO case: (i) the iterative algorithm (i.e.,
WMMSE or FP) requires inverting large matrices, yet the
matrix inversion is much more difficult to learn than the
matrix addition and multiplication; (ii) the iterative algorithm
requires finding the optimal Lagrange multipliers for the power
constraint, which is complicated and highly nonlinear and
can increase the training cost considerably. To address these
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issues, this paper proposes a novel deep unfolding scheme
called DeepFP that relies on the new FP technology. Differing
from the previous methods [5]–[12], DeepFP avoids learning
the large matrix inversion and the nonlinear optimization of
Lagrange multipliers, and only focuses on how to coordinate
a small set of scalar stepsizes.

The WSR problem is notoriously difficult. In fact, it is
shown to be NP-hard even for the single-input-single-output
case [13]. Aside from the branch-and-bound approaches in
[14], [15], most existing works aim to find a local optimum
efficiently. The classic methods include the maximum ratio
transmission (MRT) [16], the zero-forcing (ZF) method [17],
and the regularized ZF precoding (RZF) method [18], which
are verified at the link level under certain conditions but can
lead to quite large performance losses at the system level.
In more recent literature, the WMMSE algorithm [1], [2] is
widely adopted for solving the WSR problem. Its main idea
is to utilize a connection between the rate maximization and
the mean square error (MSE) minimization to rewrite the
WSR problem as a weighted MSE minimization problem—
which can be efficiently solved by the block coordinate descent
(BCD) method [19] in an iterative fashion. Thanks to the BCD
theory, the WMMSE algorithm has provable convergence to a
stationary point solution of the WSR problem.

However, the WMMSE algorithm can incur high computa-
tional tension in the massive MIMO case. To be more specific,
each iterate of WMMSE requires inverting a matrix whose size
is proportional to the number of transmit antennas. Thus, in the
massive MIMO case with a large number of antennas deployed
at the transmitter side, the WMMSE algorithm requires lots of
large matrix inversions. Such tension has been relieved more or
less by a recent work [20]. The main idea of [20] is to recast
the beamforming vectors to a new space whose dimension
only depends on the total number of receive antennas (or the
number of users, assuming each user has only one receive
antenna). This modified WMMSE algorithm (referred to as
the RWMMSE in [20]) now instead inverts matrices whose
sizes are proportional to the number of users. Clearly, the
RWMMSE algorithm has reduced complexity only when there
are a limited number of users in the network.

Another challenge faced by the WMMSE algorithm in
massive MIMO is caused by the power constraint. Specifically,
in each iteration, WMMSE needs to determine a Lagrange
multiplier for each cell to satisfy the power constraint on the
beamforming vectors. The optimal Lagrange multiplier has no
closed-form solution and is typically addressed via bisection
search [1]. The recently proposed RWMMSE algorithm [20]
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has partially addressed this issue. The authors of [20] show
that it is optimal to scale all the beamforming vectors simul-
taneously to meet the power constraint when considering a
single cell. However, it is difficult to extend the above result
for multiple cells. Another approach to the massive MIMO
beamforming problem is based on the manifold optimization
[21]. Its main idea is to restrict the beamforming variables to a
Riemannian manifold defined by the power constraint, thereby
converting the constrained optimization to the unconstrained.
However, the manifold method only optimizes beamforming
vectors under the fixed power levels, whereas WMMSE can
optimize beamforming vectors and powers jointly; besides, its
performance is verified only for the single-cell network.

Aside from the above model-driven method, there is a
surge of research interest in the data-driven approach to the
massive MIMO beamforming problem. Differing from those
pure black-box learning methods [22]–[25] that attempt to
mimic the existing optimization methods (e.g., WMMSE) via
the universal approximation of DNN, the deep unfolding meth-
ods [26]–[28] take into account the iterative structure of the
conventional model-driven algorithms and aims to learn the be-
havior of each iterate. For the WSR beamforming problem, the
previous studies [5]–[12] mostly take the WMMSE algorithm
as the learning target of deep unfolding. For example, the deep
unfolding network in [5] aims at the RWMMSE algorithm,
while [6], [7] aim at the WMMSE algorithm. However, as
these deep unfolding methods successfully mimic WMMSE,
they in the meanwhile inherit the aforementioned drawbacks of
their target algorithms. As such, the deep unfolding network in
[5] can only handle a single cell, [7] has to approximate the
large matrix inversion in a suboptimal approximate fashion,
and [6] is limited to the multiple-input-single-output (MISO)
case in order to avoid learning the bisection search for the
optimal Lagrange multipliers.

To overcome the above bottleneck, the deep unfolding
method proposed in this paper takes advantage of an intimate
connection between WMMSE and FP. Roughly speaking,
FP refers to a class of optimization problems which are
fractionally structured, e.g., the sum-of-ratios maximization.
It turns out that the WSR problem can be recast to a sum-
of-ratios problem, and accordingly the WMMSE algorithm
boils down to a special case of the FP algorithm [3], [4].
In fact, the large matrix inversion and the Lagrange multiplier
optimization have been well studied in the realm of FP, e.g.,
the so-called nonhomogeneous quadratic transform [29], [30]
can address both issues. Thus, unlike the previous works
[5]–[12] that consider deep-unfolding the WMMSE algorithm
directly, this work proposes incorporating the inhomogeneous
quadratic transform into the deep unfolding paradigm. We then
show that the core of the learning task is to decide the stepsize
used in the inhomogeneous quadratic transform-based FP.

The main novelties and advantages of our proposed deep
unfolding scheme, DeepFP, are summarized in the following:
1) Eliminating large matrix inversion. The existing deep

unfolding methods must learn how to invert a large matrix
in order to imitate WMMSE, but this is costly for training.
While the recent work [20] considers reducing the matrix
size under certain conditions, we propose eliminating the

large matrix inversion altogether by means of nonhomoge-
neous quadratic transform.

2) Linearizing the Lagrange multiplier optimization. The
conventional WMMSE algorithm entails a bisection search
procedure for optimizing the Lagrange multipliers for the
power constraints, which is troublesome for deep unfold-
ing. The RWMMSE algorithm [20] and its deep-unfolded
version [5] can linearize the optimization but only work
for a single cell. In contrast, the proposed DeepFP extends
the linearized optimization of the Largrange multipliers for
multiple cells.

3) New learning target for deep unfolding. The previous
deep unfolding methods struggle to learn the large matrix
inversion and the highly nonlinear optimization of La-
grange multipliers. The DeepFP scheme no longer needs to
recover these complicated operations. Instead, it just learns
how to choose a scalar stepsize for each cell, so the training
cost is much lower.

The remainder of this paper is organized as follows. Section
II introduces the weight sum-rate problem formulation. Section
III shows and compares existing model-driven algorithms, in-
cluding the WMMSE algorithm, the RWMMSE algorithm, the
FP algorithm and the FastFP algorithm. Section IV develops
our proposed DeepFP network based on the FastFP algorithm.
Section V presents numerical results. Finally, Section VI
concludes the paper.

Here and throughout, bold lower-case letters represent vec-
tors while bold upper-case letters represent matrices. For a
vector a, aH is its conjugate transpose, and ∥a∥2 is its ℓ2
norm. For a matrix A, A∗ is its complex conjugate, A⊤ is
its transpose, AH is its conjugate transpose, and ∥A∥F is its
Frobenius norm. [A]mm is the mth diagonal element of A.
col(A) refers to the number of columns in matrix A. For a
square matrix A, tr(A) is its trace, |A| is its determinant, and
λmax(A) is its largest eigenvalue. Denote by Id the d × d
identity matrix, Cℓ the set of ℓ × 1 vectors, Cd×m the set of
d × m matrices, and Hd×d

+ the set of d × d positive definite
matrices. For a complex number a ∈ C, ℜ{a} is its real
part, |a| is its absolute value. The underlined letters represent
the collections of the associated vectors or matrices, e.g., for
a1, . . . ,an ∈ Cd we write a = [a1,a2, . . . ,an]

⊤ ∈ Cn×d.

II. WEIGHTED SUM-RATE MAXIMIZATION PROBLEM

Consider a downlink massive multi-user multiple-input-
multiple-output (MU-MIMO) system with L cells. Within each
cell, one BS with Nl transmit antennas serves K users. The
kth user in the ℓth cell is indexed as (ℓ, k). Assume that user
(ℓ, k) has Mℓk receive antennas and that dℓk data streams are
intended for it. Let Vℓk ∈ CNℓ×dℓk represent the beamforming
matrix used by BS ℓ associated with the signal sℓk ∈ Cdℓk×1

for user (ℓ, k). Assuming that the different data streams are
statistically independent, we have that

E[sℓksHℓk] = Idℓk
.
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The received signal yℓk at user (ℓ, k) is given by

yℓk = Hℓk,ℓVℓksℓk︸ ︷︷ ︸
desired signal

+

K∑
j=1,j ̸=k

Hℓk,ℓVℓjsℓj︸ ︷︷ ︸
intracell interference

+

L∑
i=1,i̸=ℓ

K∑
j=1

Hℓk,iVijsij︸ ︷︷ ︸
intercell interference

+nℓk, (1)

where Hℓk,i ∈ CMℓk×Ni is the channel from BS i to user
(ℓ, k), and nℓk ∼ CN (0, σ2I) is the additive white Gaussian
noise with power level σ2. The achievable data rate for user
(ℓ, k) can be computed as [31]

Rℓk = log |I+VH
ℓkH

H
ℓk,ℓF

−1
ℓk Hℓk,ℓVℓk|, (2)

where

Fℓk =

K∑
j=1,j ̸=k

Hℓk,ℓVℓkV
H
ℓkH

H
ℓk,ℓ

+

L∑
i=1,i̸=ℓ

K∑
j=1

Hℓk,iVijV
H
ijH

H
ℓk,i + σ2IMℓk

. (3)

We seek the optimal transmit beamformers V to maximize
the weighted sum rates:

max
V

L∑
ℓ=1

K∑
k=1

wℓkRℓk (4a)

s.t.
K∑

k=1

tr(VℓkV
H
ℓk) ≤ Pℓ, ℓ = 1, 2, . . . , L, (4b)

where the nonnegative weight wℓk ≥ 0 reflects the priority of
user (ℓ, k), and the constant Pℓ is the power budget of BS ℓ.

III. MODEL-DRIVEN APPROACH

This section reviews the state-of-the-art model-based meth-
ods for solving the WSR problem (4), i.e., the WMMSE
algorithm, the FP method, and their improved versions. In par-
ticular, we compare how these methods handle the large matrix
inversion and power constraint in the iterative optimization.

A. WMMSE [1], [2]

Based on the connection between the rate maximization and
the MSE minimization, the WSR problem (4) can be recast
into

min
W,U,V

L∑
ℓ=1

K∑
k=1

wℓk(tr(WℓkEℓk)− log |Wℓk|) (5a)

s.t.
K∑

k=1

tr(VℓkV
H
ℓk) ≤ Pℓ, (5b)

Wℓk ≻ 0, (5c)

where the MSE term Eℓk is computed as

Eℓk = E[(UH
ℓkyℓk − sℓk)(U

H
ℓkyℓk − sℓk)

H ]. (6)

There are two auxiliary variables: Uℓk ∈ CNℓ×dℓ is the
linear receive beamformer, and Wℓk is a positive semidefinite
(PSD) weight. It turns out that the new objective in (5a)
is separately (albeit not jointly) concave in W,U,V. The
WMMSE algorithm simply optimizes these variables in an
iterative fashion as

Uℓk = D−1
ℓk Hℓk,ℓVℓk, (7)

Wℓk = (Idℓk
−UH

ℓkHℓk,ℓVℓk)
−1, (8)

Vℓk = wℓk(ηℓINℓk
+Gℓ)

−1HH
ℓk,ℓUℓkWℓk, (9)

where

Dℓk =

L∑
i=1

K∑
j=1

Hℓk,iVijV
H
ijH

H
ℓk,i + σ2IMℓk

, (10)

Gℓ =

L∑
i=1

K∑
j=1

wijH
H
ij,ℓUijWijU

H
ijHij,ℓ. (11)

In (9), ηℓ ≥ 0 is a Lagrange multiplier introduced for each BS
ℓ to account for its power constraint

∑K
k=1 tr(VℓkV

H
ℓk) ≤ Pℓ.

By the complementary slackness [32], each ηℓ is optimally
determined as

ηℓ = min

{
η ≥ 0 :

K∑
k=1

tr(VℓkV
H
ℓk) ≤ Pℓ

}
. (12)

Remark 1. In (12), ηℓ is typically determined using the
bisection method [1]. Specifically, if ηℓ > 0, ηℓ must sat-
isfy the power constraint

∑K
k=1 tr(VℓkV

H
ℓk) ≤ Pℓ. In that

case, let JΨJH be the eigendecomposition of Gℓ and let
Φ = JH

(∑
(i,j) w

2
ijH

H
ij,ℓUijW

2
ijU

H
ijHij,ℓ

)
J,and then en-

force the power constraint as

Nℓ∑
i=1

[Φ]ii
([Ψ]ii + ηℓ)2

= Pℓ. (13)

Note that the left-hand side of (13) is a decreasing function
of ηℓ > 0. Therefore, the bisection method can be easily used
to compute ηℓ such that (13) holds. However, the bisection
method has no closed-form expression and must be performed
iteratively, thus increasing the learning cost for the deep
unfolding scheme.

Remark 2. Equation (9) involves the inversion of ηℓINℓk
+Gℓ,

which is a Nℓ × Nℓ matrix and becomes a large matrix in
the massive MIMO case. The computational burden of such
large matrix inversion makes the WMMSE algorithm difficult
to learn. For this reason, the existing deep unfolding methods
for WMMSE have to compromise, e.g., [5] limits the wireless
network to a single cell, [7] approximates the large matrix
inversion with error.

B. RWMMSE [20]

The RWMMSE algorithm addresses problem (4) by chang-
ing the solution space of the beamforming variables. Define

Hℓ ≜
[
HT

ℓ1,ℓ, . . . ,H
T
ℓK,ℓ

]T
, (14)
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fq(V,Γ,Y) =
∑
ℓ,k

[
tr
(
2ℜ

{
VH

ℓkΛℓk

}
− ωℓkY

H
ℓkDℓkYℓk (Idℓk

+ Γℓk)
)
+ ωℓk log |Idℓk

+ Γℓk| − tr (ωℓkΓℓk)
]

(25)

Hℓ ≜ HℓH
H
ℓ , Hℓk,i ≜ Hℓk,iH

H
i , and the new beamforming

variable Vℓk ∈ C(
∑K

k=1 Mℓk)×dℓk . The RWMMSE algorithm
approximates the original constrained problem (4) as an un-
constrained problem:

max
V

L∑
ℓ=1

K∑
k=1

wℓk log |I+Hℓk,ℓVℓkF
−1

ℓk V
H

ℓkH
H

ℓk,ℓ|, (15)

where

Fℓk =
∑

(i,j) ̸=(ℓ,k)

Hℓk,iVijV
H

ijH
H

ℓk,i

+
σ2

Pℓ

K∑
k=1

tr(HℓVℓkV
H

ℓk)I. (16)

Again, the new problem (15) is separately convex in its
variables, so we can iteratively optimize these variables as

Uℓk = D
−1

ℓk Hℓk,ℓVℓk, (17)

Wℓk = (I−U
H

ℓkHℓk,ℓVℓk)
−1, (18)

Vℓk = wℓk(

K∑
j=1

wℓjσ
2

Pℓ
tr(Mℓj)Hℓ

+

L∑
i=1

K∑
j=1

wijH
H

ij,ℓMijHij,ℓ)
−1H

H

ℓkUℓkWℓk, (19)

where Mℓk = UℓkWℓkU
H

ℓk and

Dℓk =

L∑
i=1

K∑
j=1

Hℓk,iVijV
H

ijH
H

ℓk,i+
σ2

Pℓ

K∑
k=1

tr(HℓVℓkV
H

ℓk)I,

(20)

After solving problem (15), the RWMMSE algorithm re-
covers the actual beamforming variable Vℓk as

Vℓk =
√
βℓHℓVℓk, (21)

where βℓ =
Pℓ∑K

k=1 tr(HℓVℓkV
H
ℓk)

.

Remark 3. In (19), the matrix to invert has the size of∑K
k=1 Mℓk×

∑K
k=1 Mℓk, so the complexity of matrix inversion

is independent of the number of transmit antennas at the BS.
In massive MIMO scenarios where Nℓ ≫

∑K
k=1 Mℓk, the

RWMMSE algorithm can reduce the computational complexity
significantly. Moreover, the RWMMSE algorithm enforces the
power constraint by scaling the solution linearly, which is
much more efficient than the bisection search as required by
WMMSE in Remark 1.

Remark 4. However, The RWMMSE algorithm proposed in
[20] is limited to the single-cell case. In other words, problem
(15) is equivalent to problem (4) only when L = 1. The
performance of RWMMSE cannot be guaranteed in the general
multi-cell case with L ≥ 2.

C. Connection Between WMMSE and FP

The FP algorithm solves problem (4) by constructing a
series of surrogate functions for minorization-maximization
[33]. By using the Lagrangian dual transform [4], problem
(4) is transformed into

max
V,Γ

L∑
ℓ=1

fr(V,Γ) (22a)

s.t.
K∑

k=1

tr(VℓkV
H
ℓk) ≤ Pℓ, (22b)

where the new objective function is given by

fr(V,Γ) =
L∑

ℓ=1

K∑
k=1

wℓk [log |Idℓk
+ Γℓk| − tr(Γℓk)

+tr((I+ Γℓk)V
H
ℓkH

H
ℓk,ℓD

−1
ℓk Hℓk,ℓVℓk)

]
. (23)

The FP algorithm suggests applying the quadratic transform
[3] to further reformulate problem (22) as

max
V,Γ,Y

L∑
ℓ=1

fq(V,Γ,Y) (24a)

s.t.
K∑

k=1

tr(VℓkV
H
ℓk) ≤ Pℓ, (24b)

where fq(V,Γ,Y) is displayed in (25) at the top of the page,
with

Λℓk = wℓkH
H
ℓk,ℓYℓk(Idℓk

+ Γℓk). (26)

Again, the new objective in (24a) is separately concave in
V,Γ,Y, so the FP algorithm allows iteratively optimizing
these variables as

Yℓk = D−1
ℓk Hℓk,ℓVℓk. (27)

Γℓk = VH
ℓkH

H
ℓk,ℓF

−1
ℓk Hℓk,ℓVℓk. (28)

Vℓk = (ηℓINℓk
+ Lℓ)

−1Λℓk, (29)

where

Lℓ =

L∑
i=1

K∑
j=1

wijH
H
ij,ℓYij(Idij

+ Γij)Y
H
ijHij,ℓ. (30)

Similar to the case of the WMMSE algorithm, ηℓ is a Lagrange
multiplier introduced for each BS ℓ to account for its power
constraint, and still can be optimally determined as in (12).

Remark 5. The above use of the FP technique recovers the
WMMSE algorithm exactly. But we point out that there are
other possible ways of using the FP technique, which lead
to other iterative algorithms (and they may even outperform
WMMSE in certain cases [4]).

Remark 6. Similar to the WMMSE algorithm, the FP algo-
rithm involves large matrix inversion and the bisection method
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fn(V,Γ,Y,Z) =
∑
ℓ,k

[
tr
(
2ℜ

{
VH

ℓkΛℓk +VH
ℓk(λℓINℓk

− Lℓ)Zℓk

}
+ ZH

ℓk(Lℓ − λℓINℓk
)Zℓk − λℓV

H
ℓkVℓk

)
+ωℓk log |Idℓk

+ Γℓk| − tr (ωℓkΓℓk)] . (35)

for optimizing the Lagrange multipliers. Thus, although FP
generalizes WMMSE, the above two drawbacks that prohibit
deep unfolding still exist.

D. FastFP [29], [30]

The main drawback with the FP algorithm is that it requires
computing the large matrix inverse in (29): recall that Lℓ is
an Nℓ ×Nℓ matrix and Nℓ is a large number in the massive
MIMO setting. To eliminate the large matrix inversion, we can
incorporate the following bound into the FP method:

Lemma 1. (Nonhomogeneous Bound [33]) Suppose that two
Hermitian matrices L,K ∈ Hd×d satisfy L ⪯ K. Then for
any two matrices X,Z ∈ Cd×d, one has

tr(XHLX) ≤ tr
(
XHKX+ 2ℜ{XH(L−K)Z}

+ZH(K− L)Z
)
, (31)

where the equality holds if Z = X.

Following the above lemma, we rewrite fq(V,Γ,Y) as

fq(V,Γ,Y) =
∑
ℓ,k

tr
(
2ℜ

{
VH

ℓkΛℓk

}
−VH

ℓkLℓVℓk

)
+ const, (32)

where const represents a constant term when (Γ,Y) are held
fixed. Treating Lℓ as L and setting

K = λI, (33)

where

λ = λmax(Lℓ) (34)

is the largest eigenvalue of matrix Lℓ, the objective in (24a)
is converted to fn(V,Γ,Y,Z) in (35). When other variables
are held fixed, each Z in (35) is optimally determined as

Zℓk = Vℓk. (36)

Likewise, when other variables are fixed, each Vℓk is opti-
mally determined as

V⋆
ℓk =

V̂ℓk if
∑K

j=1 ∥V̂ℓj∥2F ≤ Pℓ√
Pℓ∑K

j=1 ∥V̂ℓj∥2
F

V̂ℓk otherwise, (37)

where

V̂ℓk = Zℓk +
1

λℓ
(Λℓk − LℓZℓk). (38)

The updates of Γℓk and Yℓk are the same as in the FP algo-
rithm. We refer to this enhanced FP algorithm as the FastFP
algorithm in the rest of the paper. Algorithm 1 summarizes
the FP algorithm and the FastFP algorithm.

Algorithm 1 FP and FastFP for Massive MIMO Beamforming
1: Initialize V to feasible values.
2: repeat
3: Update each Zℓk by (36).
4: Update each Γℓk by (28).
5: Update each Yℓk by (27).
6: Update each Vℓk by (29) in FP (resp. (37) in FastFP).
7: until the objective value converges

Remark 7. Similar to the case of RWMMSE algorithm, the
power constraint

∑K
k=1 tr(VℓkV

H
ℓk) ≤ Pℓ in the FastFP

algorithm can be enforced by scaling V̂ℓk. This linear method
is much more computationally efficient and much easier to
learn than the bisection search method. It is worth noting that
the FastFP algorithm has provable performance in the multi-
cell case, whereas the RWMMSE algorithm is limited to the
single-cell case.

Remark 8. FastFP completely eliminates large matrix inver-
sions. In fact, the matrix inversions in (27) and (28) can also
be eliminated by using the Nonhomogeneous Bound multiple
times [34]. We do not consider this extension in our problem
case because the matrices in (27) and (28) are small and easy
to invert.

Remark 9. In (33), there are two common choices for λ to
ensure that the condition Lℓ ⪯ K in lemma 1 holds. The first
method is to choose λ = λmax(Lℓ) as in (34). These methods
can lead to a large gap between Lℓ and λmax(Lℓ)I when
the condition number of Lℓ is large. Alternatively, we can let
λ = ∥Lℓ∥F . This method has lower computational complexity
but incurs a larger gap between Lℓ and K. The approximation
error caused by λ slows down the convergence of the FastFP.
This motivates us to leverage deep unfolding to find a better
choice of λ.

E. Eigen Zero-Forcing [35]

For the comparison purpose, we now introduce a simple
beamforming algorithm called the Eigen Zero-Forcing (EZF)
[35] without requiring iterations. The EZF method can be
thought of as an improved Zero-Forcing (ZF) method. We first
perform the SVD for each channel matrix Hℓk,ℓ as

Hℓk,ℓ = PℓkΣℓkQ
H
ℓk, (39)

where Σℓk ∈ RMℓk×Mℓk is a diagonal matrix containing the
positive singular values of Hℓk,ℓ, sorted in descending order,
and Pℓk ∈ CMℓk×Mℓk is a unitary matrix consisting of the
left singular vectors. The matrix Qℓk ∈ CMℓk×Nℓ contains
the right singular vectors. From Qℓk, we select the first dℓk
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Fig. 1. The DNN structure used in the DeepFP network. The DNN consists
of one input layer, multiple hidden layers, and one output layer. The activation
function in the hidden layers is the complex extension of ReLU.

singular vectors corresponding to the largest dℓk singular
values of Hℓk,ℓ. This selection yields Q̃ℓk ∈ CNℓ×dℓk . Next,
we define Q̃ℓ as the concatenation of Q̃ℓk for all users (ℓ, k):

Q̃ℓ ≜
[
Q̃ℓ1, Q̃ℓ2, . . . , Q̃ℓK

]
∈ CNℓ×

∑K
k=1 Mℓk (40)

The matrix Q̃H
ℓ can then be interpreted as a virtual channel.

Finally, the EZF precoding matrix for user (ℓ, k) is computed
by applying ZF precoding on the virtual channel Q̃ℓ:

Vℓk = Q̃ℓ

(
Q̃H

ℓ Q̃ℓ

)−1

. (41)

Like the ZF method, the EZF method cannot provide any
performance gurantee for the multi-cell case.

IV. DATA-DRIVEN APPROACH

This section introduces a deep unfolding method, called the
DeepFP, for learning the behavior of the FastFP algorithm.

A. Deep Unfolding for Iterative Optimization

A generic iterative algorithm can be written in the following
standard form as [5]

xt = ft(x
t−1;ϕ), (42)

where t = 1, 2, . . . denotes the iteration index, x is the
optimization variable, the status variable ϕ is a random vari-
able that characterizes the uncertainty in the optimization
problem (e.g., it is the random channel fading of the MIMO
beamforming problem), and the ft is the iterate function that
yields the new solution xt−1 given the previous solution xt

conditioned on the current status ϕ.
Deep Unfolding aims to unroll the iterative algorithm into a

multi-layer sequential process. With a set of trainable param-
eters θ, the deep unfolding method represents (42) as a DNN
layer:

xl = Fl(x
l−1; θl, ϕ), (43)

where l = 1, 2, ..., T denotes the layer index, T is the total
number of layers, Fl denotes the structure of deep unfolding
network in the lth layer, and xl−1 and xl are the input and
output of the lth layer, respectively. In principle, after θl has
been trained properly, Fl(x

l−1; θl, ϕ) is expected to behave
similarly to ft(x

t−1;ϕ) for any possible ϕ.

B. Optimizing λℓ via DNN

By specializing the above deep unfolding framework to the
massive beamforming problem (4) and the FastFP algorithm,
we have the following correspondence:

x ≡ {Zℓk,Γℓ,k,Yℓk,Vℓk}, (44)

ϕ ≡ {Hℓk,j , wℓk, Pℓ, σ
2}. (45)

Equation (37) implies that the update of Vℓk follows a gradient
projection update, where 1

λ corresponds to the step size of
the gradient update. Thus, we treat λ as a function of two
arguments: Zℓk and 1

λℓ
(Λℓk −LℓZℓk). We then use the DNN

to learn the behavior of this function. Let θl(·) denote the lth
DNN layer in the unfolding network. The value of λ in the
lth layer is then given by

λl
ℓk = θl(Zℓk,Λℓk − LℓZℓk). (46)

As (46) indicates, we think of λl as a function of Zℓk and
Λℓk−LℓZℓk. Here is the rationale of the above setting: in the
FastFP algorithm, the beamforming matrix Vℓk is updated as
a linear combination of its value from the previous iteration
and a new direction matrix Λℓk − LℓZℓk. When the number
of iterations is small, Vℓk significantly deviates from the new
direction. Thus, λ should be large to accelerate convergence.
As the number of iterations increases, Vℓk approaches the
stationary point, and Λℓk−LℓZℓk approaches the zero vector.
In this case, λ should be small to avoid oscillations. Thus, it
leads to modeling λ as a function of Zℓk and Λℓk − LℓZℓk.

In the FastFP algorithm, λ is set to the largest eigenvalue of
Lℓ to ensure convergence. In contrast, the proposed DeepFP
network need not require λl to satisfy (31). Rather, our goal
is seek a desirable λl through the DNN, to yield a better Vℓk.
This goal can be achieved by choosing a smaller λ than that
in (34). According to MM theory, the WSR can be improved
by optimizing its lower bound, i.e., the surrogate function
fn(V,Γ,Y,Z). A smaller λ may result in a tighter lower
bound, thereby accelerating the iterative process.

The DNN structure used in the DeepFP network consists of
one input layer, multiple hidden layers, and one output layer,
as shown in Fig. 1. The input to the DNN is the flattened
Zℓk and Λℓk − LℓZℓk. Instead of dealing with the real and
imaginary parts separately, we directly use flattened complex
matrices as the integrated input to the DNN. To achieve this,
we extend the Rectified Linear Unit (ReLU) [36] activation
function to support complex-valued data in the hidden layers.
Specifically, the complex ReLU is defined as:

ReLUComplex(a+ bi) = max(a, 0) + max(b, 0)i, (47)

where i is the imaginary unit. We use ℜ(·) as the activation
function in the output layer to ensure that the output of the
DNN is a real number.
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Fig. 2. The architecture of our proposed DeepFP network. The modules zl(·), γl(·), yl(·), vl(·) are designed based on (36), (28), (27), and (37), respectively.
In the module vl(·), the parameter λl is provided by the DNN θl, Ll is determined by (30), and Γl is determined by (26). The DNNs in different layers of
the DeepFP network have the same structure but do not share parameters.

C. Unfolding Layers

With the DNN θl(·), the structure of the lth layer in the
DeepFP network can be described as

Zl = zl(V
l−1), (48)

Γl = γl(Z
l;ϕ), (49)

Yt = yl(Z
l;ϕ), (50)

λl
ℓk = θl(Z

l
ℓk,Λ

l
ℓk − Ll

ℓZ
l
ℓk), (51)

Vl = vt(Z
l,Γl,Yl;λl, ϕ), (52)

where (48), (49), (50), and (52) correspond to the iterative
algorithm steps (36), (28), (27), and (37), respectively.

The full structure of the DeepFP network is depicted in
Fig.2. The variables Ll and Γl are computed based on (30)
and (26), respectively. The DNNs across different layers of the
unfolding network are based on the same structure (e.g., the
number of hidden layers, the number of neurons per layer, and
the activation functions). The module named ”Power Scale”
represents scaling beamforming vectors to satisfy the power
constraints.

D. Training Strategy

We adopt a hybrid training strategy that comprises two
stages. In the first stage, for a given channel sample H, let V∗

denote the solution obtained from Algorithm 1, and let VT

denote the output of the unfolding network at the final layer.
The first training stage employs supervised learning, with V∗

serving as the label with respect to the sample H. The MSE
between V∗ and VT is adopted as the loss function in the
first stage:

LOSS1 =
1

KL

L∑
ℓ=1

K∑
k=1

∥VT
ℓk −V∗

ℓk∥22. (53)

In the second stage, we switch to the unsupervised learning,
using the WSR function of VT as the loss function, that is

LOSS2 = − 1

KL

L∑
ℓ=1

K∑
k=1

wℓkRℓk. (54)

The above hybrid training strategy has been widely adopted
in the deep unfolding field and normally attains superior
performance over using supervised training or unsupervised
training alone [24].

Regarding the parameter initialization, each V0 is randomly
and independently generated according to the standard com-
plex Gaussian distribution CN (0, 1), followed by a scaling
process to meet the power constraint

∑K
k=1 tr(VℓkV

H
ℓk) = Pℓ

for each BS. Moreover, for the supervised learning at the first
stage, the FastFP algorithm and the unfolding network use the
same starting point V0.

E. Transferability of Unfolding Network

An already-trained DeepFP network can be seamlessly ap-
plied to new scenarios with arbitrary numbers of base stations
and users. Specifically, if a DeepFP network is trained with
N transmit antennas and d data streams per user, it can also
be applied to cases where the number of transmit antennas is
less than N and the number of data streams is less than d. We
now explain how to implement this transfer.

Consider a new scenario with channel matrices Hℓk,j where
col(Hℓk,j) = N ′ < N and the number of data streams is d′ <
d. To adapt the input for the network, we construct augmented
channel matrices Ĥℓk,j = [Hℓk,j ,0], where col(0) = N−N ′.
This augmented matrix Ĥℓk,j is then used as the input to the
unfolding network.

In each layer of the unfolding network, the parameter vector
pair (Zℓk,Λℓk − LℓZℓk) satisfies col(Zℓk) = col(Λℓk −
LℓZℓk) = d′. To match the required input size of the DNN,
we construct Ẑℓk = [Zℓk,0] and Z̃ℓk = [Λℓk − LℓZℓk,0],
where col(0) = d − d′. The new pair (Ẑℓk, Z̃ℓk) is then fed
into the DNN as input.

F. Complexity Analysis

Consider a L-cell MIMO system where each cell is
equipped with Nt transmit antennas and serves K users. Each
user is equipped with Nr receive antennas. The number of data
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Fig. 3. A 7-cell downlink massive MIMO network with 6 users in each cell.
Red triangles represent the BSs, black hexagons represent the boundaries of
each cell, and the colored circles represent the user locations.

streams is d. The computational complexity of Algorithm 1 at
each iteration is given by

O
(
LN3

t + L2K2(Nt +Nr)Nrd

+LKN2
r (Nr + d) + LK2(Nt + d)d2

)
, (55)

where the term O(LN3
t ) is for the computation of the largest

eigenvalue in (34).
In the DeepFP network, the largest eigenvalue computation

is replaced by the forward propagation of the DNN, with
all other operations remaining unchanged. Consequently, the
computational complexity for each layer is

O
(
LKU(2Ntd+ (Mhid − 1)U + 1) + L2K2(Nt +Nr)Nrd

+LKN2
r (Nr + d) + LK2(Nt + d)d2

)
, (56)

where Mhid represents the number of hidden layers in the
DNN, and U represents the number of neural units in each
hidden layer. Compared to the FastFP algorithm, the DeepFP
network achieves lower computational complexity.

Thanks to its capability to avoid large matrix inversion and
linearize the Lagrange multipliers computation, the DeepFP
strategy requires a much lower computational complexity
than the existing unfolding schemes [5]–[10]. Actually, the
computationally efficiency of DeepFP is even comparable with
the uniterative algorithm EZF as formerly stated in Section
III-E. Here is a numerical example. Consider a massive MIMO
system with one BS, 12 users, 256 transmit antennas, 8 receive
antennas per user, and 8 data streams per user. The number
of matrix multiplications required by the EZF algorithm is
3, 981, 312. In contrast, when the DNN has two hidden layers,
each containing 64 neurons (i.e., U = 64, Mhid = 2), the
number of matrix multiplications per iteration required by
DeepFP is 9, 235, 200, i.e., only 1.32 times higher than that
of EZF.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
DeepFP network versus model-driven algorithms and existing
unfolding algorithms. First, we evaluate how the different
training strategies impact the optimization performance. Next,
we try out a variety of wireless network examples. Finally,
we validate the generalizability of the proposed DeepFP
network by using different settings for training and test. The
proposed DeepFP network is implemented in Python 3.10.0
with PyTorch 2.4.1. The system runs on a desktop with an Intel
i7-13700 Central Processing Unit (CPU) clocked at 3.4 GHz
and 64 GB of Random Access Memory (RAM). A Graphics
Processing Unit (GPU) RTX 4080 is used during training to
reduce training time, but not during testing.

A. Experimental Setup

1) Dataset Generation: We generate channel data from a
7-hexagonal-cell MIMO system as considered in [29]. Within
each cell, the BS is located at the center, and the K downlink
users are randomly distributed. Each BS and user are equipped
with Nt and Nr antennas, respectively. The number of data
streams is d ≤ Nr. The weights of all users are set to be equal.
The distance between adjacent BSs is D = 0.8 km, and the
cell radius of each cell is R√

3
. The maximum transmit power

of each BS is 20 dBm, and the background noise power is
−90 dBm. The distance-dependent path loss of the downlink
is modeled as 128.1+37.6 log10 r+τ (in dB), where r denotes
the distance from the BS to the user (in kilometers). τ is a
zero-mean Gaussian random variable with an 8 dB standard
deviation to account for the shadowing effect. Fig. 3 illustrates
the network configuration.

We randomly generate sufficient channel samples based on
the above model, and divide them into training, validation,
and test sets in a 0.70 : 0.15 : 0.15 ratio. During training, the
dataset is divided into multiple minibatches of the same batch
size. The DeepFP network is trained over multiple epochs.
The validation set is used to adjust the learning rate during
training, while the test set is used to evaluate the performance
of the trained network.

2) Parameters Selection: For all our numerical results, the
DNN consists of two hidden layers, one input layer, and
one output layer. Unless explicitly stated, each hidden layer
contains 64 neurons. We first investigate the impact of batch
size and learning rate on convergence performance. We set
Nt = 64, Nr = 4, K = 6, and d = 2. The DeepFP
network has L = 8 layers. Fig.4 shows how the weighted sum-
rate of the validation set changes during training for different
batch size and learning rate settings. The results show that
a larger learning rate speeds up convergence. However, an
excessively large learning rate may cause instability and lower
WSR performance. Thus, based on the results in Fig.4(a), we
select an initial learning rate of 0.005, which is gradually
decreased during the training process. The results in Fig. 4(b)
show that as the batch size increases, the convergence rate
initially improves and then decreases. This occurs because
excessively large batch sizes result in longer processing times
per minibatch due to memory limitations. Therefore, we
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Fig. 4. The WSR performance on validation dataset during training process
for different learning rate (a) and batch size (b).

choose a batch size of 200 to balance WSR performance and
convergence rate.

We then analyze the effect of the number of unfolding layers
L in the DeepFP network on WSR performance. Networks
with varying numbers of unfolding layers L are trained, and
their WSR performance is evaluated on the test set. The results
show that as L increases, the WSR performance improves
initially but begins to fluctuate once L exceeds 8. Since the
inference time of the DeepFP network grows linearly with
L, we select L = 8 to balance WSR performance with
inference time. Moreover, Fig. 5 demonstrates the significant
performance advantage of the DeepFP network compared
to the FastFP algorithm. The DeepFP network achieves far
superior performance compared to the FastFP algorithm when
the number of layers in the DeepFP network equals the number
of iterations in the FastFP algorithm.

B. WSR Maximization for Different Wireless Networks

1) Single-Cell Performance: We evaluate the WSR perfor-
mance of the DeepFP network under different network sizes.
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Fig. 5. The WSR performance of the DeepFP network and the FastFP
algorithm. For the FastFP algorithm, the curve represents the WSR results
after i iterations. For the DeepFP network, the curve shows the WSR results
for a trained network with i layers.

TABLE I
WEIGHTED SUM-RATE AND COMPUTATIONAL PERFORMANCE FOR

SINGLE-CELL MIMO WITH Nt = 64, Nr = 4, d = 2,K = 6.

Algorithm Weighted Sum-Rate CPU time (Sec.)
DeepFP 14.664 (98.9%) 0.053 (14.0%)
FastFP 14.826 (100.0%) 0.378 (100.0%)

FastFP (76 iterations) 14.664 (98.9%) 0.287 (76.0%)
WMMSE-SC 15.270 (103.0%) 0.563 (148.9%)

IADNN 12.540 (84.9%) 0.055 (14.5%)

We begin with a single-cell MU-MIMO system with Nt = 64,
Nr = 4, K = 6, and d = 2. The following three algorithms
are selected as baseline algorithms:

1) FastFP Algorithm: The result of the FastFP Algorithm
is taken as the output of Algorithm 1 after 100 iterations.

2) WMMSE-SC Algorithm: The WMMSE-SC algorithm
first uses WMMSE to solve a unconstrained WSR prob-
lem, and then scales the solution to satisfy the power
constraints. This method avoids the bisection method
but retains large matrix inversion, and it has theoretical
guarantees only in the single-cell case. The result after
100 iterations is taken as the output of the WMMSE-SC
algorithm.

3) IADNN: The Iterative Algorithm-Induced Deep Unfold-
ing Neural Network (IAIDNN) [5] unfolds the WMMSE-
SC algorithm for single-cell MIMO systems. IAIDNN
eliminates large matrix inversions by introducing train-
able matrices that approximate matrix inversion based
on the first-order Taylor expansion. We implemented the
original network structure proposed in [5] using PyTorch,
following the training settings recommended in [5]. The
number of layers in IAIDNN is set to 7, as used in [5].

We evaluate the WSR performance of the DeepFP network
and baseline algorithms using the same test data. The average
WSR and CPU time are computed from 10, 000 test samples,
with the results presented in Table I. We also report the results
of FastFP after 76 iterations, which achieves the same WSR
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Fig. 6. Distributions of the DeepFP network and baseline algorithms in single
cell MIMO system with Nt = 64, Nr = 4, d = 2,K = 6.
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Fig. 7. The CDF that describes the rates achieved by different algorithms in
single cell MIMO system with Nt = 64, Nr = 4, d = 2,K = 6.

performance as the DeepFP network. The WSR performance
and runtime of each algorithm are compared to those of the
FastFP algorithm, using percentages for clarity. The results
show that the DeepFP network achieves 98.9% of the WSR
achieved by FastFP after 100 iterations, while using only
14.0% of its runtime. The FastFP algorithm requires 76 iter-
ations to achieve the same WSR performance as the DeepFP
network, resulting in nearly five times the runtime. Moreover,
our algorithm outperforms IADNN in WSR performance with
a similar computation time.

The distribution and cumulative distribution function (CDF)
of the WSR performance achieved by different algorithms are
shown in Fig.6 and Fig.7, respectively. Each distribution and
its corresponding CDF are based on results from 10, 000 test
samples. The results indicate that the proposed DeepFP net-
work closely matches the performance of the FastFP algorithm
and outperforms the IADNN algorithm.

2) Multi-Cell Performance: We further validate the WSR
performance of the DeepFP network in a 7-cell multi-cell
MIMO system, as shown in Fig. 3. The settings are Nt = 64,
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Fig. 8. Distributions of the DeepFP network and the FastFP algorithm in
7-cell MIMO with Nt = 64, Nr = 4, d = 2,K = 6.
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Fig. 9. The CDF that describes the rates achieved by different algorithms in
7-cell MIMO with Nt = 64, Nr = 4, d = 2,K = 6.

TABLE II
WEIGHTED SUM-RATE AND COMPUTATIONAL PERFORMANCE FOR

MULTI-CELL MIMO WITH Nt = 64, Nr = 4, d = 2,K = 6.

Algorithm Weighted Sum-Rate CPU time (Sec.)
DeepFP 99.474 (97.4%) 0.275 (11.7%)
FastFP 102.186 (100.0%) 2.333 (100.0%)

FastFP (56 iterations) 99.480 (97.4%) 1.306 (56.0%)

Nr = 4, K = 6, and d = 2. The FastFP is used as the
baseline. Table II presents the WSR performance and CPU
runtime. The results show that the proposed DeepFP network
achieves 97.4% of the WSR of FastFP while using only 11.7%
of its runtime. After 56 iterations, FastFP achieves the same
performance as the DeepFP network. Fig.8 and Fig.9 show
the distribution and CDF of the WSR. The results indicate
that the DeepFP network closely approximates the distribution
of FastFP in the multi-cell MIMO system. Fig. 10 shows the
mean of λ provided by the DNNs, as well as the mean of
λ calculated using equation (34) under the same inputs. The
results match our expectations: the DeepFP network produces
smaller λ values.
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TABLE III
WEIGHTED SUM-RATE AND COMPUTATIONAL PERFORMANCE OF THE

DEEPFP NETWORK FOR MULTI-CELL MIMO WITH
Nt = 64, Nr = 4, d = 4 FOR DIFFERENT K .

K Weighted Sum-Rate CPU time (Sec.) Iterations by FastFP
6 128.796 (92.8%) 0.285 (11.2%) 23
9 157.554 (90.3%) 0.584 (12.1%) 21
15 203.895 (86.5%) 1.678 (7.6%) 19

Next, we consider scenarios with more users and higher
data streams per user. We set Nt = 64, Nr = 4, d = 4, and
K = 6, 9, 15. Table III presents the average WSR performance
and CPU time. We define ”Iterations by FastFP” as the
average number of iterations FastFP requires to achieve the
same performance as the DeepFP network. The results show
that as the number of users increases, the WSR performance
improves. However, the gap between the DeepFP network
and FastFP also widens. Comparing Table III with Table II,
when Nt = 64, Nr = 4, and K = 6, the DeepFP network
demonstrates better acceleration performance at d = 2. Fig.11
and Fig.12 show the distribution and CDF of the WSR
for different values of K, respectively. The results indicate
that although the WSR performance of the DeepFP network
decreases in percentage terms with an increasing number of
users, it still provides a good approximation of the distribution
of the FastFP algorithm.

C. Generalizability Validation

In the previous subsection, we evaluated the WSR and
acceleration performance of the DeepFP network in MIMO
systems of varying sizes. In practice, the test data often differs
significantly from the training data, which arises from two
aspects: 1) The test data may differ in size from the training
data. For instance, in massive MIMO, the number of users may
change due to mobility. Additionally, we expect the trained
network to be applicable to data from different cells, leading
to variations in the number of transmit antennas. 2) Changes
in the data distribution. Even if the test data has the same size

TABLE IV
WEIGHTED SUM-RATE PERFORMANCE OF THE DEEPFP NETWORK WITH
Nt = 64, Nr = 4,K = 6 FOR DIFFERENT d. THE DEEPFP NETWORK IS

TRAINED WITH d = 4.

d Weighted Sum-Rate (bit/sec.) Iterations by FastFP
1 66.486 (96.5%) 57
2 97.074 (95.0%) 40
3 115.596 (94.6%) 32
4 128.796 (92.8%) 23

TABLE V
WEIGHTED SUM-RATE PERFORMANCE OF THE DEEPFP NETWORK WITH
Nr = 4, d = 2,K = 6 FOR DIFFERENT Nt . THE DEEPFP NETWORK IS

TRAINED WITH Nt = 64

Nt Weighted Sum-Rate (bit/sec.) Iterations by FastFP
16 55.224 (96.3%) 27
24 67.962 (96.7%) 39
32 77.502 (96.8%) 44
40 82.584 (96.5%) 42
48 86.880 (96.9%) 48
56 93.546 (96.8%) 49
64 99.474 (97.4%) 56

as the training data, its distribution may differ. Therefore, in
this subsection, we assess the generalization performance of
the DeepFP network.

First, we use the network trained with Nt = 64, Nr = 4,
K = 6, and d = 4 to test its performance under different
values of d. The results are shown in Table IV. These results
indicate that the trained DeepFP network still performs well
in terms of WSR for different values of d. As d decreases, the
number of iterations required by FastFP to achieve the same
performance increases. Comparing the results for d = 2 with
those in Table II, the network’s WSR performance decreases
by 2.4% when the number of data streams per user increases.

Next, we test the performance of the DeepFP network,
trained with Nt = 64, Nr = 4, K = 6, and d = 2, under
different values of Nt. The results are shown in Table V. These
results indicate that as Nt changes, the WSR performance of
the DeepFP network remains stable at around 97%.

Next, we continue using the DeepFP network trained with
Nt = 64, Nr = 4, K = 6, and d = 2 to test its WSR
performance on datasets with varying numbers of users. The
results are shown in Fig. 13. These results indicate that when
K < 6, the DeepFP network outperforms the FastFP algorithm
after 100 iterations. As K increases, the gap between the
DeepFP network and the FastFP algorithm widens.

In the previous generalization test, we evaluated the trained
network’s generalization ability on test data of different sizes.
Next, we test the network’s generalization performance on
data with different distributions. During the generation of the
training data, the distance between base stations is set to
D = 0.8 km, and the standard deviation of the path loss
parameter τ is 8 dB. We generate test data with varying values
of D and standard deviation, and then evaluate the network’s
WSR performance. The results are presented in Table VI.
These results show that the DeepFP network demonstrates
good WSR performance under different distributions.
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Fig. 11. Distributions of the DeepFP network and the FastFP algorithm in 7-cell MIMO with Nt = 64, Nr = 4, d = 4 for different K.

TABLE VI
WEIGHTED SUM-RATE PERFORMANCE OF THE DEEPFP NETWORK FOR DIFFERENT CELL DISTANCES D AND STANDARD DEVIATION OF τ : THE

NETWORK IS TRAINED FOR D = 0.8 AND A STANDARD DEVIATION OF τ = 8.

Cell Distance (km)
Weighted Sum-Rate (bit/sec.) Iterations by FastFP

τ 4 dB τ 8 dB τ 12 dB τ 4dB τ 8 dB τ 12 dB
0.4 261.168 (93.2%) 261.012 (101.5%) 259.386 (113.2%) 58 132 233
0.6 167.178 (94.8%) 186.222 (99.1%) 205.962 (109.5%) 45 91 197
0.8 108.090 (96.1%) 136.746 (99.2%) 162.756 (107.5%) 35 89 152
1.0 73.386 (96.5%) 100.506 (99.1%) 127.536 (105.2%) 25 82 217
1.2 52.062 (97.0%) 76.446 (98.8%) 105.948 (103.5%) 21 71 204
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Fig. 12. The CDF that describes the rates achieved by the DeepFP network
and the FastFP algorithm in 7-cell MIMO with Nt = 64, Nr = 4, d = 4 for
different K.

VI. CONCLUSION

This work aims at a novel deep unfolding paradigm for
optimizing the massive MIMO beamformers in cellular net-
works. The proposed DeepFP method can be distinguished
from the existing deep unfolding methods [5]–[10] for MIMO
beamforming in two respects. First, while the previous work
[20] can only reduce the complexity of large matrix inversion,
DeepFP eliminates the large matrix inversion completely.
Second, while the previous work can linearize the Lagrange
multiplier optimization only for a single cell, DeepFP extends
the linearization for a generic multi-cell network. DeepFP
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Fig. 13. The WSR performance of the DeepFP network and the FastFP
algorithm in 7-cell MIMO with Nt = 64, Nr = 4, d = 2 for different K.
The DeepFP network is trained with Nt = 64, Nr = 4, d = 2,K = 6.

acquires the above two benefits by linking the traditional
WMMSE algorithm [1], [2] with the FP tools [3], [4] and fur-
ther incorporating an inhomogeneous bound [29] into the DNN
design for deep unfolding. Extensive numerical examples
show that DeepFP reduces the complexity of the conventional
model-driven iterative algorithms (such as WMMSE) and can
even outperform them in maximizing the WSR for multi-cell
massive MIMO networks.
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