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Abstract — With the rapid development of the fifth-

generation wireless communication systems, a profound

revolution in terms of transmission capacity, energy-

efficiency, reliability, latency, and connectivity is highly

expected to support a new batch of industries and applica-

tions. To achieve this goal, wireless networks are becom-

ing extremely dynamic, heterogeneous, and complex. The

modeling and optimization for the performance of real-

world wireless networks are extremely challenging due to

the difficulty to predict the network performance as a func-

tion of network parameters, and the prohibitively huge

number of parameters to optimize. The conventional net-

work modeling and optimization approaches rely on drive

test, trial-and-error, and engineering experience, which are

labor intensive, error-prone, and far from optimal. On the

other hand, while the research community has spent sig-

nificant efforts in understanding the fundamental limits of

radio channels and developing physical layer techniques to

operate close to it, very little is known about the perfor-

mance limits of wireless networks, where millions of radio

channels interact with one another in complex manner-

s. This paper reviews the very recent mathematical and

learning based techniques for modeling and optimizing the

performance of real-world wireless networks in five aspects,

including channel modeling, user demand and traffic mod-

eling, throughput modeling and prediction, network pa-

rameter optimization, and IRS empowered performance

optimization, and also presents the corresponding notable

performance gains.

Key words — Mathematical methods, Learning based

methods, Network performance modeling, Network per-

formance optimization.

I. Introduction

The performance of a real-world wireless network de-

pends on not only the capabilities of its hardware (e.g.,

base stations, mobile handsets), but also how it is config-

ured. A wireless network serving a metropolitan area con-

sists of large numbers of base stations, each covering sev-

eral cells and providing various communication services

for users in this area. The service range, signal strength,

antenna settings, and many other configurations of the

base stations greatly impact the communication quality

and user experience [1].

In real-word wireless networks, the surrounding envi-

ronment (such as terrains, building distributions, crowd

densities, user distributions and trajectories, and network

traffic loads) of different base stations are also diverse.

Therefore, millions of tunable parameters need to be op-

timized to improve the overall performance of the wire-

less networks. Only by setting them to match the local
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radio environment and user traffic patterns can the net-

work reach its optimal performance.

Traditional optimization methods rely on human

knowledge. Professional network optimization engineers

monitor and analyze the radio environment and log da-

ta of each base station, locate the problems, and propose

the optimization solution based on the expert experience.

However, in a real-world wireless network, the optimiza-

tion for millions of parameters is extremely costly and

time consuming, making the conventional approaches on-

ly suitable for very small-scale networks [2]. On the other

hand, while significant efforts have been made to under-

stand the fundamental limits of radio channels, it is still

challenging to develop efficient methods to model and op-

timize the performance of the real-world wireless network-

s. What are the performance gains that can be brought by

adjusting the parameters of a network? Can mathemati-

cal/learning models defeat the best network engineers and

fully reap the capacity of a large-scale wireless network?

Effective approaches for modeling and optimizing the

network performance are greatly needed. In particular,

some fundamental problems are still open with many chal-

lenges, such as:

1) Lack of Historical Data: Most parameters in

wireless networks are configured to be default values, and

there is no diversified historical data;

2) Large Network Fluctuation: The fast-varying

propagation environment and user behaviors make the

network performance non-stationary and hard to predict;

3) Large Search Space: The number of network pa-

rameter combinations is huge, reaching sizes of 102,000,000

for a metropolitan 5G wireless network;

Fig. 1 The relations among the five aspects in performance modeling

and optimization of real-world wireless networks.

4) Complex Interactions: Parameter configuration

for a single cell affects its own performance but also that

of the neighbor cells, inducing complex interactions.

Faced with these challenges, this paper reviews the

very recent mathematical and learning based techniques,

including various cutting-edge technologies such as deep

learning, reinforcement learning, and black-box optimiza-

tion to effectively improve the service quality and user ex-

perience of the real-world wireless networks. Specifically,

we focus on five aspects in the performance modeling and

optimization for real-word wireless networks, which con-

sist of channel modeling, user demand and traffic model-

ing, throughput modeling and prediction, network param-

eter optimization, and an advanced intelligent reflecting

surface (IRS) empowered performance optimization. The

relations among the five aspects are illustrated in Fig. 1.

Firstly, channel modeling provides the accurate estimate

of the wireless environment. On the other hand, user de-

mand and traffic modeling establishes a precise prediction

for the dynamic data traffics. Based the the well estab-

lished channel models, user demand and traffic models,

the mapping function from the parameters in channels

and data traffics to the overall performance of the wire-

less networks can be investigated through the throughput

modeling and prediction. Once the mapping function is

obtained, various parameters can be optimized to maxi-

mize the overall performance of the wireless networks. In

particular, some advanced scenarios such IRS involve a

lot of special continuous and/or discrete parameters. By

judiciously designing these parameters, the overall perfor-

mance can be much improved.

The rest of the paper is organized as follows. Section II

reviews state-of-the-art channel modeling methods. Sec-

tion III introduces the main traffic prediction and traffic

models. In Section IV, we discuss how to achieve the

throughput modeling and prediction through the cutting-

edge mathematical and learning based technologies. After

the performance modeling, we further move to the net-

work parameter optimization in Section V, and introduce

the optimization methods for an advanced IRS empow-

ered scenario in Section VI. Finally, the conclusions are

included in Section VII.

II. Channel Modeling

In this section, we introduce the 5G channel modeling

methods and the channel models commonly used in exist-

ing network optimizers. Then, we propose our design of

data-driven localized statistical channel modeling.

1. 5G channel modeling methods

According to the modeling methods, channel modeling

can be classified into deterministic manner and stochas-

tic manner. The deterministic channel models usually

depend on the map information of environment, and de-

scribe the propagation paths by solving the Maxwell’s e-

quations or approximated propagation equations. As for

the stochastic channel models, they characterize the chan-

nel parameters by using certain probability distributions,
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and can be applied to various scenarios with relatively low

accuracy. Generally speaking, the deterministic channel

models cost much higher computational complexity than

the stochastic channel models.

The new techniques and applications in 5G mobile

communication systems have introduced new challenges

to the channel modeling [3]. A wide frequency range

and broad bandwidths of channel measurement need to

be conducted for millimeter wave (mmWave) communica-

tion in 5G systems. Taking massive MIMO for example,

due to the large dimension of antenna array, the distance

between the transceiver and the clusters could be smaller

than the Rayleigh distance, resulting in that the assump-

tion of plane wavefront does not hold. Besides, the array

non-stationarity would occur. The clusters may appear

and disappear from the viewpoint of one antenna element

to the next one, which means the path parameters such as

power and delay can drift over different antennas. These

two properties set new requirements to the channel mod-

eling for massive MIMO. In [4], the spherical wavefront

with an ellipsoid model is considered in the massive MI-

MO channel model. The appearance and disappearance

of the clusters over the array is modeled by a birth-death

process with cluster generation rate λG and cluster re-

combination rate λR.

2. Channel models in the network optimizer

As channel models are indispensable for system de-

sign and performance evaluation in the network optimiz-

er, here we focus on two types of channel models that are

exploited in the network optimizer:

1) Empirical path loss model. Coverage and capac-

ity optimization (CCO) is a typical application of network

optimization by tuning the tilt angle and azimuth angle

of antenna array. To describe the channel characteristics,

the simplified empirical path loss model (e.g., COST231-

Hata model) can be exploited in the CCO. However, such

ideal one-dimensional path loss model is not accurate e-

nough and fails to embrace the actual complexity and

randomness of practical 5G networks. The only one-

dimensional path loss model needs to be extended in-

to multi-dimensional channel model, because the massive

MIMO and beamforming in the 5G networks yield high-

resolution multi-path channels in the angular domain.

2) Neural network channel model. A neural net-

work enabled wireless channel model framework is pro-

posed in [7]. The input parameters are transmitter (Tx)

and receiver (Rx) coordinates, Tx-Rx distance, and car-

rier frequency, while the output parameters are channel

statistical properties, including root mean square (RMS)

delay spread (DS), and RMS angle spread (AS). Dataset-

s used to train and test the neural network are collect-

ed from both real channel measurements and a geometry

based stochastic model (GBSM). Different datasets from

different scenarios will show different channel statistics.

3. Localized statistical channel modeling

We propose a novel data-driven localized statistical

channel modeling (LSCM) for the network optimizer,

which is capable of sensing the physical geographical

structures of the targeted cellular environment [5]. The

proposed channel modeling solely relies on the reference

signal receiving power (RSRP) of the user equipment, un-

like the traditional methods which use full channel im-

pulse response matrices. The key is to build the rela-

tionship between the RSRP and the channel’s angular

power spectrum. Based on it, we formulate the task of

channel modeling as a sparse recovery problem where the

non-zero entries of the spare vector indicate the channel

paths’ powers and angles of departure (AoD). By taking

advantage of the spatial consistency of channel, LSCM is

able to be constructed in a manner of multiple grids [6].

Similar to the 3GPP’s technical report [8], we focus

on the tilt AoD, azimuth AoD, and channel gain from

the base station to the user equipment with one receive

antenna, ignoring the arrival angle and delay. Suppose

the uniform rectangular array of the base station contain-

s NT = Nx × Ny antennas. The CIR of antenna (x, y)

from the base station to the user equipment is given as

hx,y(t) =

NV∑
i=1

NH∑
j=1

√
αi,j(t)× gi,j × e−j2π

dxx
λ cos θi sinϕj

×e−j2π
dyy

λ sin θi × e−jωi,j(t)−jωx,y(t). (1)

Fig. 2 Angular discretization of the channel model in the downlink.
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We consider the channel modeling of the massive MI-

MO downlink communication system with beamforming,

where the signal is transmitted from a base station to

the user equipment through several propagation paths, as

shown in Fig. 2. The tilt and azimuth AoD over the free

space are discretized into NV and NH angles, respective-

ly. If there does not exist a path in the angles (θi, ϕj),

the corresponding channel gain αi,j(t) is zero, otherwise

αi,j(t) > 0 for the path (θi, ϕj) in the channel. It is readily

known that the channel gain αi,j(t) is sparse, and contains

multiple propagation paths in the angular domain.

The channel gain αi,j(t) consists of path loss and the

shadowing effect. Path loss is determined by the phys-

ical environment (distance, carrier frequency, buildings)

which is assumed to be relatively static, while shadowing

is caused by the obstacles and is usually modeled as the

log-normal distribution. Thus, we assume αi,j(t) follows

the log-normal distribution, with its mean representing

path loss and its covariance representing the shadowing ef-

fect. Notcie that ωi,j(t) is the random phase error between

different angles caused by the reflection, diffraction, and

scattering effect of electromagnetic waves, while ωx,y(t) is

the random phase error of different antennas caused by

the imperfect hardware of the antenna array. Inspired

by [8], we assume ωi,j(t) follows the uniform distribution

between −π and π, and ωx,y(t) follows the Gaussian dis-

tribution with zero mean and variance σ2.

The channel measurement of our proposed LSCM is

the RSRP measured from multiple beams. In the down-

link of 5G cellular systems, the RSRP can be measured

from synchronization signals block (SSB) beams or chan-

nel state information-reference signal (CSI-RS) beam-

s. Denote the precoding matrix of the kth beam as

W (m) ∈ CNx×Ny , whose size is the same as that of the

antenna array. The entry of W (m) is
(
w

(m)
x,y

)
=
(
ejφ

(m)
x,y

)
.

Denote the CIR matrix from the base station to the us-

er equipment as H ∈ CNx×Ny , where the entry of H is

hx,y(t) in Eq.(1). The RSRP of the mth beam at time t

is defined as

rsrpm(t) = P

∣∣∣∣∣∑
x,y

hx,y(t)w(m)
x,y

∣∣∣∣∣
2

= P
∣∣∣tr(HTW (m)

)∣∣∣2 ,
(2)

where P denotes the transmit power. The quality of the

channel can be represented through rsrpm(t), and a larger

value of rsrpm(t) reflects better channel quality.

Notice that rsrpm(t) is a random variable, since

hx,y(t) contains three independent random variables, i.e.,

ωx,y(t), ωi,j(t), and αi,j(t). We want to show the rela-

tionship between the first-order statistics of rsrpm(t) and

αi,j(t), i.e., their expectation E (rsrpm(t)) and E (αi,j(t)),

implying the statistical relationship of the RSRP and an-

gular information. Suppose the expectation of rsrpm(t) is

RSRPm , E (rsrpm(t)), and the expectation of channel

gain is Xi,j , E (αi,j(t)), then we have

RSRPm =

NV∑
i=1

NH∑
j=1

A
(m)
i,j Xi,j , (3)

where

A
(m)
i,j , Pg2i,j

(
NxNy

(
1− e−σ

2
)

+e−σ
2 ∑
x,y

∑
x′,y′

cos
(
ψ
(m)
i,j,x,y − ψ

(m)
i,j,x′,y′

))
.

The statistical relationship between the expectation of

RSRP measurements RSRPm and the first-order statistics

of channel gain Xi,j is connected by the coefficient A
(m)
i,j .

The angular power spectrum (APS) can be expressed by

Xi,j , where the subscripts i and j indicate the tilt angle

θi and azimuth angle ϕj , respectively. According to this

finding, it is possible to extract the angular information

from beam-wise RSRP if we can infer Xi,j from RSRPm.

The channel statistics of APS from the proposed chan-

nel model are consistent with those of the true propaga-

tion environment, and can provide enough information for

the network optimization simulator to generate channels

similar to reality.

Fig. 3 RSRP distribution in real-world drive testing.

As shown in Fig. 3, it is an example of collecting the

real-world RSRP measurement by using the drive-test in

the street of Chengdu city, China. The carrier frequency

of the cellular network is 2.6 GHz with 100 MHz band-

width. The number of antennas in the base station is
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32. Compared with the traditional network optimization

which needs many rounds of drive testing, the proposed

LSCM only need one round of drive testing, and thus,

saving a lot of money and enabling the assessment of

network optimization. Depending on the velocity of the

driving car, dozens of samples are collected when pass-

ing through a 10 × 10 square meters grid in the interval

of several seconds. The samples of RSRP measurements

are averaged to alleviate the effect of fast fading. If the

number of samples is smaller, then the noise effect will be

dominant which leads to a higher mean absolute error.

III. User Demand and Traffic Modeling

Optimizing the performance of a real-world wireless

network is extremely challenging because of the difficul-

ty to predict the network performance as a function of

network parameters, and the prohibitively large problem

size. Therefore,traffic prediction and modeling plays a fun-

damental role in the overall performance optimization of

wireless networks.

Industry and industry communication field attach

great importance to traffic prediction. Huawei predicted

that mobile network traffic will increase a hundredfold in

2030 during the Global Mobile Broadband Forum 2021

(MBBF2021), saying that wireless networks are an im-

portant pillar for moving towards an intelligent world.

Ericsson not only predicted that the traffic in 2026 would

increase by 4.5 times compared with 2020, but also pro-

posed that there would be 3.5 billion 5G users in the world

by 2026. On the other hand, Nokia Bell Labs made predic-

tions on the infrastructure and interconnection equipment

in the future. Among them, 4G expenditure will account

for 80% of the infrastructure expenditure of operators in

the next few years. It is estimated that there will be 50

billion interconnection devices in the world by 2025. Pre-

diction of network traffic is being rapidly advanced by the

world’s leading research institutions.

Therefore, how to predict the traffic with low cost and

high accuracy under the rapidly changing propagation en-

vironment, user environment as well as huge number of

network parameter combinations. It has become an urgen-

t international open problem in the industry, with great

market demand and academic value. It is also a very at-

tractive research hotspot.

1 Traffic models.

Our goal is to accurately characterize and predict the

stochastic behaviour of the real world 4G/5G wireless net-

work. High precision traffic prediction method has become

a research hotspot in the industry and academia. In or-

der to improve the prediction accuracy, great efforts have

been made in model establishment and prediction meth-

ods, and fruitful results have also been achieved, which

has promoted the progress of traffic prediction and pa-

rameter estimation.

The prediction models used in the existing research

are roughly categorized into the following three types:

1) Statistical models

At present, the statistical models used in the research

are mainly time series, probability estimation and parti-

cle filter models. Some representative models include Holt

Winters (HW) [9] and ARIMA[10]. ARIMA(p, d, q) mod-

el is an extension of ARMA(p, q) model, which can be

expressed as:

(1−
p∑
i=1

λiB
i)(1−B)dyi = (1−

q∑
i=1

θiB
i)εt, (4)

where B is the lag operator,
∑p
i=1 λiB

i and
∑q
i=1 θiB

i

are autoregressive coefficient polynomial and moving av-

erage coefficient polynomial respectively. εt is zero mean

white noise sequence, d ∈ Z, d > 0.

Network slicing is the key technology of the fifth gener-

ation (5G) mobile network. In order to meet the demand

of network operators for dynamic deployment of network

slicing, scholars proposed to use HW model [9] to reduce

the cost of network operators by 15% and energy con-

sumption by 13%. The utilization rate of resources also

increased by more than 6 per cent. Clemente et al. [11]

used the method of combining naive Bayesian classifier

and Holt Winter to accurately predict cell traffic, and

limited the prediction RMSE to 5%.

For short-term flow forecast represented by seasonal

problems, Wang [10] et. al used MSE and MAE to e-

valuate the performance of the proposed ARMA model,

and proved that short-term prediction has high prediction

accuracy. The literature [12] proved that the prediction

accuracy of conditional probability estimation model is

higher, and the daily seasonal model error is 9.92%.

ARIMA model and HW model are univariate time se-

ries models. In addition to these two models, there are ES

method [13] and particle filter method based on sequence

Monte Carlo (SMC) [14] for traffic demand prediction. As

the classical method, the prediction accuracy of statisti-

cal model is much less than machine learning and deep

learning model since most of them are based on the lin-

ear relationship between input values and output values.

Considering statistical models are not suitable for large-

scale problems and are difficult to be trained in parallel,

scalability is also its drawback.

2) Machine learning models

Common machine learning prediction models are

mainly tree based, such as random forest(RF) [15] and
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LightGBM [16], and others are based on Gaussian pro-

cess or other mechanisms. Decision trees are the most

basic concepts in tree based models, which can be used to

solve classification or regression problems. Predict yi by

giving xi to get the objective function:

Obj(Θ) = L(θ) + Ω(Θ). (5)

where L represents the training error function, and Ω rep-

resents the regularization term to control the complexity

of the model and prevent over fitting. For logical regres-

sion, the most commonly used loss function is the Logistic

function, which is expressed as:

L(θ) =
∑
i

[yiln(1 + e−ŷi) + (1− yi)ln(1 + eŷi)]. (6)

The regularization is expressed as:

Ω(Θ) = θj(1− α
λ

m
)− α

m

m∑
i

[(hθ(x
(i))− y(i))x(i)j ]. (7)

where λ is constraint multiplier and hθ(x) represents the

prediction function.

In the literature [17], Prophet model and GPR mod-

el are combined to predict single cell traffic, and RMSE,

MAE and MAPE are used to verify the superiority of

prediction accuracy and explain the inherent space-time

correlation of traffic data. In order to realize ultra reliable

low delay communication (URLLC) in large-scale machine

communication networks, the Tree based ML model was

proposed by Weerasinghe et. al [18].

In order to improve users’ life comfort, Abozariba et.

al [19] proposed ML model to accurately predict user-

s’ traffic demand. Performance index analysis shows that

the prediction results can provide higher resource utiliza-

tion. In addition, in order to improve the service quality

of smart cities and understand the distribution of service

demand in time and space, a spatio-temporal Bayesian

hierarchical learning method [20] is used to learn and pre-

dict the distribution of MEC resource demand in time and

space, and the resource allocation efficiency predicted by

the model is higher.

Compared with deep learning models, these models

have the characteristics of ”shallow” structure. Machine

learning models usually perform better than statistical

models, but only in a few cases can obtain better predic-

tion results than deep learning models.

3) Deep learning models

The main advantages of deep learning model include

high precision prediction performance and high scalabili-

ty. The deep learning models used in the study include

Convolutional Neural Network (CNN)[21]-[24], Graph

Convolutional Network (GCN)[25]-[32], Long Short-Term

Memory (LSTM)[33]-[45]. The GCN model is expressed

as:

f(H(l), A) = σ(D̂−
1
2 ÂD̂−

1
2H(l)W (l)), (8)

where input layer is H(0) = X, output layer is H(L) = Z,

and L is the number of layers. W and σ represent linear

transformation and nonlinear transformation respectively.

Due to the wide coverage of deep neural network, it has

been used for deep learning and has achieved great suc-

cess in a series of prediction problems in the past decade,

such as intelligent transportation system [26], urban traf-

fic prediction [36] and cellular network prediction [45].

In addition, there are Generative Adversarial Network

(GAN) [28], Deep Neural Network (DNN) [36], Attention-

based Periodic-Temporal neural Network (APTN) [37],

Multi-Stage Attention Spatial-Temporal Graph Networks

(MASTGN) [39], Neural Architecture Search (NAS) [46].

CNN can extract local spatial features of data, but

it needs a large sample size, high computational com-

plexity, high redundancy, and no memory. Therefore, it

is suitable for nonlinear time series prediction with large

sample size, high prediction accuracy, and time delay in-

sensitivity. RNN can flexibly capture the time dependence

of data, and may also cause gradient disappearance or

gradient explosion. It is suitable for dynamic short corre-

lation time series prediction. DNN can learn deep nonlin-

ear feature transformation, but it can not use historical

information to assist the current task. LSTM can better

deal with the influence of large time scale data, but it-

s convergence speed is slow, the parameters cannot be

directly determined, and it is easy to fall into local op-

timization. It is suitable for time series prediction with

large number of samples and long-term dependence. Con-

sidering the structural correlation between nodes, GCN

is very effective in processing graph data and has over s-

moothing problem. Because GCN has the function of a

low-pass filter, the characteristics tend to be the same af-

ter multiple iterations. It is suitable for spatial prediction

scenarios. GCN-GAN can predict plateau, single engine,

and double engine traffic. The model is suitable for large-

scale burst traffic prediction, and can predict three types

of traffic.

In particular, GCNs and LSTM are employed to mod-

el the spatial and temporal aspects [32]. To get a better

understandings of deep learning model, we discuss several

works in Table. 1.
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Table. 1 List of papers on deep learning traffic prediction

Reference Year Spatial/Temporal Proposed model Application Short/Long Term Evaluation metrics

21 2020 Both MDL, CNN Traffic Flow Both RMSE, MAE

22 2020 Spatial CNN, GCN Cell traffic Long-term MAE, MSE

23 2021 Both CNN ITS short-term RMSE, MAPE

24 2017 N/A CNN, LSTM Mobile traffic Both RMSE, MAE, MA

25 2020 Both LSTM, GCN Intelligent Route Planning Both RMSE, MAE

26 2022 Both LSTM, GCN ITS Both MAE,RMSE,MAPE

27 2020 N/A GCN-GAN Burst Events Long-term MSE

28 2020 N/A ML, GCN Intelligent Transportation Systems Short-term N/A

29 2021 Both LSTM, MASTGN, GCN ITS Both RMSE,MAE,MAPE

30 2020 Temporal T-GCN ITS Short-term RSME,MAE

31 2021 N/A GCN-GAN Elastic Optical Networks Short-term MSE

32 2018 Both LSTM, GCN Cellular Networks Both MAE

33 2021 N/A LSTM, DL Transportation Planning Long-term TSMAPE,TRMSE

34 2019 N/A LSTM Optical Networks Both N/A

35 2017 N/A LSTM Big Date Oriented Networks Short-term N/A

36 2022 N/A DNN, LSTM Road Network Both N/A

37 2020 Both LSTM, APTN ITS Both RMSE,MAE,MASE

38 2021 N/A LSTM Cellular Network Both NRMSE

39 2021 Temporal LSTM Cellular Network Both RMSE

40 2021 Spatial LSTM Cellular Traffic Both RMSE,MAE

41 2020 N/A LSTM Mobile Traffic Short-time RMSE

42 2020 N/A LSTM,ANFIS Network Traffic Both MSE,RMSE,MAE

43 2019a N/A LSTM,ARIMA Cellular Traffic Both RMSE

44 2019b N/A LSTM,ARIMA Cellular Traffic Both RMSE

2. Prediction problems

1) Predicting network behaviours at the millisecond

timescale is both technically infeasible and practical-

ly unnecessary, considering the stochasticity and non-

stationarity of networks caused by the rapidly changing

propagation environment and user behaviour;

2) How to clean, store, analyze and calibrate the pre-

diction model in the case of the gigantic problem size and

massive data sets of network parameters;

3) How to provide an accurate, efficient, yet inexpen-

sive assessment of network performance for any network

configuration.

3. Discussion

In the past decade, researchers have designed many

network traffic prediction algorithms based on deep learn-

ing and made great progress. Network traffic predic-

tion has made a great breakthrough from the traditional

method to the application of deep learning technology.

However, the current network traffic prediction research

is faced with the problems of few public data sets, privacy

of traffic data, and limited disclosure.

We forecast the temporal and spatial traffic distribu-

tion in the beam-space. It is the basis for characteriz-

ing the time/frequency/spatial resource utilization of each

cell, which in turn, helps quantifying the perceived inter-

ference per beam-space cluster.

To deal with the intrinsic difficulty of the traffic fore-

casting task in cellular networks, GCN is first used to

leverage the spatial correlation of the traffic in neighbor-

ing beam-space clusters. The output of the GCN is then

used by a LSTM neural network, which captures the tem-

poral behaviour of the data traffic, and enables accurate

forecasting. We present the following data-driven spatial

and temporal traffic forecast diagram in Fig. 4.

Fig. 4 Forecast diagram.

Therefore, the influence of spatial and temporal fac-

tors on the prediction results should be fully considered

when making traffic prediction, and GCN and LSTM are

combined to predict. In addition, traffic modeling should

be human-centric, fully consider the needs of users, and

conduct traffic modeling under the conditions of high se-

curity, confidentiality and privacy.

IV. Throughput Modeling and Prediction

With the development of machine learning, deep neu-

ral networks are widely used in wireless communication

systems for modeling and prediction. Neural networks

have powerful data fitting capability suitable for complex

multi-factor communication scenarios. The downlink In-

ternet Protocol (IP) throughput, defined as the payload

data volume on IP level per elapsed time unit on the U-

u interface, is an important performance metric for the

quality of service experienced by the end user. In this
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section, we propose a deep neural network-based mod-

eling approach to predict the downlink IP throughput.

Real-trace data of cellular systems in South Africa, i.e.,

user-uploaded data including physical layer measurement,

user scheduling information, user throughput and so on,

are used for model training and testing. The experimen-

tal results show that our proposed model performs well

for downlink IP throughput prediction.

The downlink IP throughput, defined as the payload

data volume on IP level per elapsed time unit on the U-

u interface, is an important performance metric for the

quality of service experienced by the end user. To make

sure that only impacts from the RAN is included in this

measurement, time units to be included in “elapsed time

unit on the Uu interface” shall only be the ones where

there is data in the buffer to be transmitted e.g., in ap-

plication data flows such as a web session, there are times

when there is no data to transmit by the eNodeB due to

bursty traffic pattern, then this “eNodeB idle time” shall

not be included in “elapsed time unit on the Uu inter-

face”.

To achieve a throughput measurement that is inde-

pendent of file size it is important to remove the samples

where one time and temperature indicator (TTI) on the

radio interface is not utilized.

Fig. 5 The net architecture of proposed model.

1. Dataset introduction

By enabling cell history record (CHR) subscription at

the 5G base station side, we can get the information re-

ported by the user base station measurements in event

blocks. The recording rule is either periodically triggered

(e.g. 5s) or event triggered (user switching between cell-

s). A total of seven event blocks exist in our dataset, the

contents of which are shown in Table. 2. The first four

events are user measurements, where all users in the cell

report cumulative measurements every 5s. The fifth event

file is the base station measurement file, where the base

station counts the beam IDs of all beams uplinked in a

time period as well as the RSRP. The last two events are

records of users cutting in and out of the base station.

These two event blocks are event triggered and therefore

much smaller in volume than the other five event blocks.

Our dataset includes measurements from 3 base stations

for 31 consecutive days.

2. Neural network-based rate prediction model

We propose a data-driven network rate prediction

model. The model uses user and base station measure-

ments collected from real environment as input and uses

the real measured experience rate as output. Thanks to

the huge amount of data collected by the network oper-

ators and the powerful data fitting ability of deep learn-

ing, many channel modeling studies combining deep learn-

ing have emerged. Unlike traditional methods, the neural

network-based approach can fully explore the deep cou-

pling relationship among a large number of measurement

metrics, and can facilitate the analysis of the impact of

network parameters on communication performance. On

the one hand, IP throughput is different from traditional

rate metrics and it is not clear which parameters are of

higher impact on this metric. The small time scale fea-

ture makes IP throughput prediction quite challenging.

These two factors require us to fully explore the relation-

ship between different measurements and IP throughput

from massive data, so we choose the NN-based prediction

model.

Table. 2 Dataset event block list

5G CHR event block list Description

PERIOD INTRA

FREQ MEASUREMENT

Downlink Service

Cell SSB RSRP

PERIOD PRIVATE

UE MEASUREMENT

User scheduling data,

including MCS, RNK, etc.

PERIOD PRIVATE

THROUGHPUT MEASUREMENT
User flow measurement data

PERIOD PRIVATE

UE MIMO MEASUREMENT
User MIMO related data

PERIOD PRIVATE

UL BEAM INFO

BS measurement uplink

beam level SRS RSRP

PRIVATE HO IN Cell switch-in events

PRIVATE INTRA

RAT HO OUT
Cell switch-out events

1) Input measurement data. After the CHR is

turned at the base station we can get the complete daily

measurement data for all cells at the base station. We

match the data with user IDs by time index to obtain the
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complete data. Currently, the basic network measurement

data required for our prediction network include:

a) Signal power per beam: 5G BSs can transmit and

receive their reference signals through multiple radiating

beams. BSs and UEs typically record measurements for

the beam with the maximum signal power. Such measure-

ments include, among others, RSRP and SINR estimates

for the synchronization signal block (SSB), the channel

state information reference signal (CSI-RS), and the de-

tection reference signal (SRS).

b) User connection information: For each UE connec-

tion, BS also records its experience by storing statistical

information, such as the amount of data transmitted, re-

sources allocated, class, modulation and coding schemes

(MCSs), packet failures, retransmissions, and data rates.

c) Base station statistics: The user experience rate is

also related to the bandwidth resources that users can

allocate during the count transmission time, which is re-

lated to the average number of activated users in the cell,

thus the higher the number of users, the lower the user

experience rate. We use not only the average number of

activated users over a single measurement period, but al-

so the number of tied activated users over a larger time

range (e.g., over 10 and 30 minutes). This information

allows capturing more temporal information, such as user

behavior habits throughout the day.

2) Framework for the Model. We use a multilayer

neural network to build the rate prediction model, and

the network structure is shown in Fig. 5. The network

contains a total of 5 hidden layers, and the number of neu-

rons in each hidden layer is indicated in Fig. 5. We use

Rectified Linear Unit (ReLU) as the activation function

to increase the nonlinearity. In addition, we add a Bath-

Norm layer between the input layer and the first hidden

layer to normalize the data samples. The loss function is

Mean Absolute Percentage Error (MAPE).

3. Experimental results

1) Data filtering. The experience rate is calculated

by removing the tail packet traffic and tail packet count

transmission time. Predicting the rate is a difficult task

for data with a relatively large percentage of tail packet

traffic and tail packet count transmission time. Therefore,

we consider predicting the data with a larger percentage

first. We set two fixed thresholds a and b to filter the

data set, and select the sample data with the tail packet

traffic ratio exceeding a and the tail packet transmission

time ratio exceeding b for prediction.

In Table. 3, we use different thresholds (a = b) to fil-

ter the data, and count the remaining percentage of the

filtered data and the remaining percentage of data trans-

mission traffic. It can be seen that, according to this

method, even a large amount of data is filtered out, the

proportion of the remaining traffic is still very large, which

is acceptable in practical engineering, so we will use the

threshold a = b = 0.2 for experiments.

Table. 3 Statistical of different filtering thresholds

Threshold Data items remaining Traffic remaining

0.1 54% 94%

0.2 39% 86%

0.3 30% 77%

0.37 25% 70%

2) Results. We use MAPE as a test indicator. Set the

filtering threshold a = b = 0.2. The results obtained from

the experiments on base stations 2343, 3434, 3955, and the

three base stations combined are shown in Table. 4.

Table. 4 Multi-base station multi-day experiment

Base Station Days Test MAPE

3955 1∼20 21.50%

2343 1∼20 25.72%

3434 1∼20 25.00%

2343, 3434, 3955 1∼20 23.50%

We can see that the 3955 base station has the best

performance. Its test MAPE can reach 21.5%, while the

other two base stations perform slightly worse, but can

also reach about 25%. The result of combining the three

base stations together is about the average of the respec-

tive results of the three base stations. In general, the

MAPE between the predicted value and the actual value

can reach below 25% which meets the needs of the indus-

try.

The following experiments are aimed at the verifica-

tion of generalization performance.

First, we verify whether it is generalizable for different

days. For the three base stations respectively, the data of

the first 20 consecutive days is selected as the training

data, and then the trained model is tested with the data

of the first 20 days and the last 10 days, and the results

are shown in Table. 5.

Table. 5 Generalization experiment of day

Base station Train days Test days Test MAPE

3955 1∼20 1∼20 21.50%

1∼20 21∼30 23.13%

2343 1∼20 1∼20 25.72%

1∼20 21∼30 37.14%

3434 1∼20 1∼20 25.00%

1∼20 21∼30 30.83%
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We can see that the performance of the base station

3955 is still the best. The ratio of MAPE tested on dif-

ferent days increase by about 2%, but the performance of

the other two base stations is not ideal. The performance

of base station 3434 increases compared to the original.

At first glance, the trained model does not generalize for

simply dividing the days continuously.

Table. 6 Generalization experiment of day (cycle on week)

Base Station Train days Test days Test MAPE

3955 3, 10, 17 3, 10, 17 24.17%

3, 10, 17 24 26.41%

2343 3, 10, 17 3, 10, 17 23.99%

3, 10, 17 24 45.02%

3434 3, 10, 17 3, 10, 17 29.91%

3, 10, 17 24 38.94%

3955 6, 13, 20 6, 13, 20 18.68%

6, 13, 20 27 24.80%

2343 6, 13, 20 6, 13, 20 25.05%

6, 13, 20 27 34.84%

3434 6, 13, 20 6, 13, 20 23.67%

6, 13, 20 27 32.00%

Take into account that traffic may have weekly period-

icity as traffic usage will vary between weekdays and week-

ends. We divide the days into weeks, selected Wednesday

(day 3, 10, 17, 24) and Sunday (day 6, 13, 20, 27) for the

experiment. From Table. 6, it can be seen that whether it

is Wednesday or Sunday, the MAPE tested by each base

station on different days is about 10% higher than that

on the original day, which is not much different from the

effect of continuous day division. That is to say, the mod-

el we trained based on the provided measured data does

not have generalization to days.

Table. 7 Generalization experiment of base station

Train Base Station Test Base Station Days Test MAPE

3955 3955 1∼20 21.50%

2343 1∼20 40.45%

3434 1∼20 56.28%

2343 2343 1∼20 25.72%

3955 1∼20 39.49%

3434 1∼20 50.64%

3434 3434 1∼20 25.00%

3955 1∼20 35.83%

2343 1∼20 40.72%

Next, we verify its generalizability for different base

stations. The first 20 days are selected for the range of

days, and the data of the three base stations are cross-

validated respectively. From Table. 7, it can be seen that

the effect of testing the model with different base stations

is far worse than the test results of the same base sta-

tion, which shows that the differences between different

base stations may be huge due to differences in geograph-

ical location and number of users and so on. The model

trained by one base station cannot be used to predict the

experience rate of other base stations.

4. Discussion

In this section, we combine machine learning and wire-

less communication systems modeling and prediction, to

predict downlink IP throughput in cellular networks with

deep neural networks. Our proposed method models the

real-trace data of the South African cellular system, and

reaches the MAPE between the predicted downlink IP

throughput and the measured value less than 25%, indi-

cating the effectiveness of our method. In addition, our

method filters most of the data, which are all small pack-

ets. Although filtering out small packets has little impact

on the data transmission traffic, it occupies for the major-

ity of the data so its value cannot be ignored. It is difficult

to predict small packets with the original method.

V. Network Parameter Optimization

As mentioned before, the performance of a real-world

network depends not only on the capabilities of its hard-

ware, but also on how it is configured. Thus, care-

ful network optimization is exceedingly desirable to en-

sure efficient radio resource management and high qual-

ity of service (QoS). Traditional optimization methods,

which are heavily dependent upon the experience of pro-

fessional network engineers, are often costly and time-

consuming. In light of this, a self-organizing network

(SON) has been proposed as a promising solution for in-

creasing the network’s efficiency and, hence, for main-

taining and/or increasing the network’s QoS while sav-

ing capital and operational costs at the same time. Vari-

ous methods for network optimization have been proposed

in existing literature which can be categorized into three

classes, i.e. optimization-based methods, learning-based

methods, and meta-heuristic methods.

1. Optimization-based methods

The computation of the objective function is usual-

ly a time-consuming and non-differentiable process due

to the complex relationships between network parameters

and key performance indicators (KPIs). Therefore, many
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existing approaches are zero-order methods which only re-

ly on the computation of the objective values. Niemela

et al [47] studied the impact of antenna downtilt on the

performance of cellular WCDMA network by utilizing a

radio network planning tool. The optimal downtilt an-

gles of antennas can be obtained based on solid simula-

tion experiments by varying the downtilt angles inside a

given range. Since the objective function values for all

the combinations of the tuning of parameters are obtain-

able, the exhaustive method is supposed to always reach

the optimal in theory. However, it is usually unfeasible

because the solution space is too large. To reduce the

time complexity, rule-based algorithm [48], greedy algo-

rithm [49], Taguchi’s method [50], and Nelder-Mead ap-

proach[51] are adopted to search the solution space to find

a near-optimal solution. Line search algorithms are also

proposed, which choose a search direction and then find

a better solution along that direction iteratively. The co-

ordinates are typically selected as the search directions,

which is referred to as Coordinate Descent (CD) [52]-[54].

These search methods can efficiently reach the optimal or

a near-optimal point in small-scale network with accurate

network model, but are not applicable in large-scale net-

work since the search space grows exponentially with the

number of parameters.

In coping with large-scale network parameter opti-

mization, line search methods in the optimal direction,

i.e., the gradient direction or its approximate version, are

often better than methods in the random or preordered

coordinate directions. However, the objective function, e-

specially the coverage, is usually discrete-valued and thus

non-differentiable. One popular approach is to convert

the non-differentiable objective function to a smoothed

approximation to make the gradient-driven methods or

other convex optimization approaches feasible [55],[56].

The approximation is usually based on simplified path

loss model and antenna radiation pattern proposed by

3GPP. In addition to the fact that the performance of

these methods depends largely on the accuracy of the

approximation model, they need to be further validat-

ed in real scenarios. Another approach is to estimate the

gradient by applying subtle changes to each network pa-

rameter [57],[58], which can be carried out on accurate

network simulators. However, this kind of gradient esti-

mator is also time-consuming and inefficient in large scale

network. Li et al. [5] proposed a zeroth-order continua-

tion method which is able to estimate the gradient with

only two objective calculations. However, the gradient

descent over the [0, 1]-valued coverage ratio is severely in-

efficient and the convergence of the algorithm can only be

guaranteed under very strict assumptions. In addition to

these gradient-driven methods, Engles et al. [59] formu-

lated the CCO problem as a mixed-integer linear program

(MILP) by introducing a low-complexity interference ap-

proximation model. They utilized state-of-the-art MILP

solvers such as CPLEX or Gurobi Optimizer to compute

(optimal) solutions. Partov et al. [60] reformulated the

non-convex utility fairness problem in a convex manner

by proposing a linear approximation of the antenna gain

model, and solved it using a primal-dual approach.

In general, most of the optimization-based algorithms

are designed to be executed offline, based on the assump-

tion that factors such as the physical environment and us-

er distribution are constant during the optimization pro-

cess, or based on statistical network environments. Only

the network configuration that is the solution of the offline

optimization is then applied to the real network. These

methods are usually highly effective, but require accurate

modeling of the network to be optimized, i.e., the loca-

tions of all users need to be known and the received power

of users with different parameter settings needs to be pre-

cisely evaluated.

2. Learning-based methods

Unlike optimization-based methods that require a

large amount of prior knowledge to accurately model the

system, the learning-based methods have the advantage

that, in general, no prior knowledge or only sparse prior

knowledge about the system’s behavior is required. More-

over, learning-based approaches are often used for online

network optimization, which makes it necessary to bal-

ance not only the various KPIs, but also the immediate

gains and long-term performance. Therefore, many stud-

ies resort to multi-armed bandit (MAB) theory to address

the resulting exploration and exploitation trade-offs. [61]-

[63]. Dhahri et al. [61] proposed a novel multi-player

MAB framework to model the trade-off in the CCO prob-

lem and a Pareto search framework to deal with the multi-

objective optimization. In order to accelerate the conver-

gence to the optimal selection, Shen et al. [62] proposed a

novel multi-armed bandit model called generalized glob-

al bandit, which allows for the modeling of similarities

across arms. They developed a series of greedy algorithms

to achieve the optimal trade-off between sufficient smal-

l cell coverage and limited macro-leakage without prior

knowledge of the deployment environment. In order to

exploit the prior knowledge of the system, Wang et al [63]

proposed the MAB algorithm with Bayesian principle on

the small base station transmit power allocation problem.

They incorporated performance correlations between sim-

ilar power values and considered a power switching penal-

ty to discourage frequent variations.
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In addition to MAB, reinforcement learning is also

widely used in online network optimization [64]-[68]. Dan-

darov et al. [64] proposed an RL approach awarded by

the sum data rate normalized to the sector capacity and

the number of satisfied users normalized to the potential

total number of served users to address CCO problem.

The network can predict the optimal antenna tilts for

a particular user distribution. But the employment of

explore-then-commit algorithm makes it highly inefficien-

t for large-scale networks. The authors of [65] treat the

coverage and capacity objectives as black-box function-

s, with no analytical formula and no gradient observa-

tions. They identified the set of Pareto optimal solutions

through Bayesian optimization (BO) and the deep deter-

ministic policy gradient algorithm (DDPG). These meth-

ods are still difficult to adapt to large-scale networks be-

cause the search space and data volume increase dramat-

ically with the number of parameters. Therefore, Bouton

et al. [66] proposed a coordinated RL approach modeling

cellular networks as coordination graphs. Message pass-

ing and parameter sharing across the graph edges enabled

the coordinated RL to operate in distributed manner and

scale to large-scale networks with more than two hundred

agents. Naderializadeh et al. [67] proposed a distributed

RL algorithm for resource management and interference

mitigation in wireless networks. In this framework, agents

were able to make decisions simultaneously in a distribut-

ed manner and the DNN structure did not vary with the

actual size of the wireless network, which made the algo-

rithm scalable to large-scale networks. In addition, safety

issues are also an important factor that has limited the

real-world deployment of RL methods for network opti-

mization. The primary source of unsafety in RL methods

can be imputed to the agent;s exploration, resulting in

undesired network performance degradation. Vannella et

al. [68] formulated the remote electrical tilt (RET) opti-

mization problem in the safe reinforcement learning (SR-

L) framework. The SRL aimed at solving RL problems

in which a minimum performance level must be guaran-

teed during learning and deployment and thus undesired

network performance degradation was avoided.

In order to address the curse-of-dimensionality, hy-

brid approaches, known as fuzzy reinforcement learning

(FRL) framework, that combine Fuzzy Logic (FL) and

RL have also been developed [69]-[73]. The fundamen-

tal idea is to address the curse-of-dimensionality by u-

tilizing FL to encode a threshold-based discrete state s-

pace and then utilize it in RL algorithms. Razavi et al.

[69] proposed an FRL method in which an FL module

models the intrinsic uncertainty of the states in cellular

networks, and then uses a Q-learning approach based on

this encoded state. In [70], the author proposed a fuzzy

Q-Learning (FQL) algorithm for self-optimization of the

tilt angle in an LTE network scenario, which can oper-

ate in a fully distributed, asynchronous and autonomous

fashion without any need for a priori information for the

network conditions or any human interventions. Fan et

al. [71] used a fuzzy neural network architecture in a

cooperative Q-learning approach to execute the joint op-

timization of sector-edge and sector-center performance

indicators. Sparse sampling is another technique that

can handle the-curse-of-dimensionality problem. Thampi

et al. [72] applied a reinforcement learning approach for

the coverage self-optimization through antenna tilting and

used sparse sampling algorithm to handle the the-curse-

of-dimensionality problem. It has the ability to adapt

to network environments without prior knowledge, han-

dle large state spaces, perform self-healing and potentially

focus on multiple coverage problems in LTE networks. In

addition, Balevi et al. [73] designed a multi-agent RL

framework to transform the weighted sum-rate optimiza-

tion problem into a markov decision process (MDP). The

two-step deep RL algorithm first aggregates inter-cell in-

terference through mean-field theory to tackle the curse of

dimensionality problem and then applies Q-learning with

linear function approximation to utilize the single agent

features.

The main disadvantage of learning-based solutions is

the large number of iterations and measurement data,

which keeps increasing with the size of the network. Be-

sides, there is usually no convergence guarantee if they

are applied to multi-agent systems. Generally, parameter-

s must be set very precisely and are often based on an ap-

plication, which means they must be customized for each

system. Furthermore, theoretically, the more knowledge

of the system is effectively utilized, the better the perfor-

mance of the corresponding method will be. Therefore,

the solution quality of learning-based methods is usually

inferior to that of optimization-based methods.

3. Meta-heuristic methods

Meta-heuristic methods mainly include, genetic algo-

rithm (GA) [74]-[78], particle swarm optimization (PSO)

[79]-[81], simulated annealing (SA) [82], Tabu search [83],

multi-objective evolution algorithm (EA) [84] and ant

colony algorithm (ACA) [85], [86].

Yoon et al. [74] proposed an efficient GA based on

quotient space property of their optimization problem to

maximize the coverage deployment in wireless sensor net-

works. Yin et al. [75] solved the outage compensation

problem by continually optimizing the antenna tilt based

on GA to reduce the coverage holes. Liu et al. [76]
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took the geometric distribution of the candidate sites in-

to consideration and proposed a geometry-induced GA to

efficiently maximize the cellular system coverage. Lak-

shminarasimman et al. [77] introduced a modified non-

dominated sorting GA to solve various parameters of cel-

lular base station placement problem such as site coor-

dinates, transmitting powers, heights, and antenna tilts.

Zhang et al. [78] proposed a hybrid two-layer optimiza-

tion framework to enhance the network capacity and cov-

erage and the genetic programming (GP) approach was

exploited for the eNB operation at small time granularity.

Sousa et al. [79] implemented a PSO algorithm to

optimize areas of low coverage and high interference si-

multaneously, through the adjustment of the antenna tilts

and/or antenna orientation. Huang et al. [80] modified

the PSO algorithm by employing a heuristic power con-

trol scheme to guide the algorithm to search for the global

optimal solution. Qin et al. [81] investigated the metric

structure of quotient subspace of the solution space and

further proposed the metric-guided PSO for the cellular

coverage problem.

The authors of [82] optimized the antenna tilt and

azimuth network-wise, with the objective of minimizing

the CPICH power consumption by simulated annealing

algorithm. Hurley et al. [83] introduced a mathematical

model for the automated design of fixed wireless access

networks through the automatic selection and configura-

tion of base station sites, and adopted the Tabu search

method to generate the fixed wireless access network in-

frastructure design. Mai et al. [84] proposed a BS plan-

ning model based on TD-LTE system and designed a evo-

lutionary algorithm with local search to solve this model.

The model aimed at reducing the co-channel interference,

expanding network capacity, and saving the network con-

struction cost at the same time. Rui et al. [85] utilized

ACA to find the optimal pilot power of each small cell to

obtain the optimal coverage. Bo et al. [86] applied an an-

t colony optimizing algorithm for balancing the network

load based on the ground user density by adjusting the

handover parameters.

In all of these methods, the solution space is searched

extensively in a fixed or stochastic manner in order to find

the optimal or near-optimal solution. As a result, they are

difficult to adapt to large-scale network parameter opti-

mization and lack performance guarantees.

VI. IRS Empowered Performance
Optimization

We now turn to a frontier technology called intelligen-

t reflecting surface (IRS) that has brought a completely

new perspective on how to improve the performance of

wireless systems. Rather than optimizing the network in-

frastructure (including base stations, remote radio heads,

and user terminals, etc.), IRS aims to improve the wire-

less environment. By manipulating the phase shift be-

tween the incident signal and the reflected signal on each

reflective element of IRS, we can render the multipath

propagations add up constructively at the target receiver,

thereby augmenting the signal-to-noise ratio (SNR).

Clearly, in the IRS configuration, the key event of

interest is passive beamforming, i.e., how to coordinate

phase shifts across the reflective elements in order to

achieve the signal focusing effect at the destination. For

ease of discussion, let us restrict our attention to a single-

input single-ouput (SISO) setup with an IRS comprising

N reflective elements. We use h0 ∈ C to denote the direct

channel from the transmitter to the receiver, hn ∈ C the

reflected channel induced by the nth reflective element,

θn ∈ [0, 2π) the phase shift of the nth reflective element,

Z the additive white Gaussian noise at the receiver. The

relationship between the transmit signal X ∈ C and the

receive signal Y ∈ C is given by

Y = h0X +

N∑
n=1

hne
jθnX + Z. (9)

The SNR boosting goal can now be characterized as max-

imizing the following objective function f(·) over the pas-

sive beamforming vector θ := (θ1, . . . , θN ):

f(θ) =
E[|Y − Z|2]

E[|Z|2]
=

∣∣∣∣∣h0 +

N∑
n=1

hne
jθn

∣∣∣∣∣
2

. (10)

Inspection of f(θ) shows that the optimal strategy is to

align each hne
jθn with h0 by setting θ?n = ∠h0 − ∠hn,

where ∠ · represents the phase of a complex number. Nev-

ertheless, the practical implementation of passive beam-

forming poses two significant challenges. First is the dis-

crete constraint on θn as elaborated in Section VI-1; sec-

ond is channel acquisition as elaborated in Section VI-2.

1. Passive beamforming for IRS with CSI

As compared to the other wireless devices, IRS bears

a distinguishing feature that it does not generate any new

signals but rather modifies the incident ones. Such fea-

ture has triggered a wave of research interest in incor-

porating the passive trait of IRS into the conventional

beamforming paradigm. Although the link-level beam-

forming problem can be readily solved as stated under

(2), a general system-level beamforming in the presence

of multiple users is much more difficult to tackle because

of nonconvexity. Among a variety of sophisticated mathe-

matical tools developed for passive beamforming, semidef-

inite relaxation (SDR) [87] and fractional programming



14 Chinese Journal of Electronics 2016

(FP) [88], [89] have been most extensively applied in the

literature to date. For instance, the authors of [90]-[96]

find SDR particularly useful because the passive beam-

forming problem can be rewritten as a quadratic program,

while the fractional structure of the passive beamforming

problem (due to the ratio terms such as SNR or SINR)

motivates the use of FP in [97]-[104]. Other nonconvex

optimization approaches for passive beamforming include

successive convex approximation (SCA) [105], [106], al-

ternating direction method of multipliers (ADMM) [94],

[107], minorization-maximization (MM) [108]-[110].

So far we treat the passive beamforming for IRS as a

continuous problem wherein each phase shift θn can be

arbitrarily chosen in [0, 2π). However, this is not the case

in the real world. On the contrary, the prototype real-

izations of IRS [111]-[116] typically limit the phase shift

choices to a small set ΦK with K discrete values, i.e.,

ΦK = {ω, 2ω, . . . ,Kω}, (11)

where

ω =
2π

K
. (12)

There are three reasons for the above restriction. First,

the hardware cost increases with the number of phase shift

choices. Second, the real-time configuration is difficult for

continuous beamforming. Third, the reflection loss be-

comes higher when more PIN diodes are integrated into

each reflective element for the continuous beamforming

purpose. This discrete constraint on θ, however, results

in a huge challenge in optimizing phase shifts. Because of

the wide belief that the discrete IRS beamforming prob-

lem is NP-hard, those works aimed at the global optimum

resort to the exponential-time algorithms such as the ex-

haustive search [107] and the branch-bound method [108],

[109]. But the recent work [110] shows a somewhat sur-

prising result that the binary beamforming problem of the

single-user case can be globally solved in linear time.

In the existing literature [111]-[114], [118]-[120], a pop-

ular approach is to first relax the discrete beamforming

problem as the continuous and then round the solution to

the closest point in the discrete set ΦK , but the resulting

error is difficult to analyze. Another approach is to opti-

mize one phase shift θn at a time while holding the rest

phase shifts fixed [121], [125], [127], namely block coor-

dinate descent. A penalty term is added to the relaxed

problem in [126] to enforce the discrete constraint. More-

over, [120] not only shows that SDR works for discrete

beamforming, but also develops a novel approximation

algorithm called APX with a strictly better performance

guarantee than SDR and the aforementioned closest point

projection (CPP) method, as illustrated in Fig. 6.
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,

of the different algorithms when there are K phase shift choices

for each reflective element.

2. Passive beamforming for IRS without CSI

The above algorithms, either for continuous beam-

forming or for discrete beamforming, all heavily depend

upon CSI, so channel acquisition in IRS-aided systems has

attracted considerable research interests over the past few

years. We are mainly faced with the following challenges

in this area:

1. Each reflected channel hn alone can be much weaker

than the direct channel h0, so hn is difficult to estimate

accurately.

2. It requires the access to the in-phase and quadra-

ture components stored in the communication chip, but

this is not supported by the current 5G protocol.

3. The channel estimation for the cascaded channels

enhances the time complexity and the overhead cost of

passive beamforming.

The prior studies mostly concentrate on challenge #1.

An early work [108] suggests estimating one single hn at

a time, assuming that the rest reflective elements are OFF

and could absorb their incident signals; the more recen-

t works [131], [132] further develop this ON-OFF policy

by estimating a group of hn’s simultaneously in order to

address the weak reflection issue as noted earlier. The

state-of-the-art estimation method is based on the dis-

crete Fourier transform (DFT) matrix [118], [122], [133],

[134]. The main idea is to generate a pilot sequence by

setting the beamforming vector to each row of the DFT

matrix; in particular, [128] shows that the Cramér-Rao

lower bound can be achieved for the least-squares estima-

tion. Moreover, a line of studies [104], [117], [119], [125]
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examine the channel estimation task from a compressed

sensing perspective, aiming to find a sparse representation

of the cascaded channels. Notice that none of the above

methods accounts for challenges #2 and #3. To the best

of our knowledge, not any channel estimation methods

have been implemented in a real-world 5G network.

Because of the aforementioned bottlenecks in channel

acquisition, the area of IRS has branched out to a new

front wherein passive beamforming is performed without

any channel information. For instance, [87], [88] suggest a

random rotation strategy that does not require instanta-

neous CSI. There is also a deep learning based approach.

In contrast to [111], [117] that apply the deep neural net-

work to channel estimation and [135]-[137], [143] that ap-

ply the deep neural network to the IRS configuration giv-

en CSI, the recent work [138] proposes using the deep

neural network to learn the direct mapping from the re-

ceived pilot signal to the passive beamforming solution,

thus sidestepping the channel estimations stage. More-

over, a cluster of works [89],[130]-[141] are based on beam

training, the main idea of which is to sweep all possi-

ble directions of the reflected beam. However, the beam

training method is limited to the millimeter/terahertz fre-

quency bands with sharp beams.

Alternatively, we could exploit the statistics of re-

ceived signal. The so-called RFocus method in [142] aims

to decide the ON-OFF state of each reflective element; it

simply tries out different ON-OFF combinations and then

chooses the state for each reflective element according to

the average performance. This statistical approach is fur-

ther developed in [112] to account for the discrete phase

shift θn ∈ ΦK . Specifically, we first generate T random

samples of θ(t) over the discrete set ΦK , where the sample

index t = 1, . . . , T , and then measure the corresponding

received signal power |Y (t)|2 with respect to each θ(t).

Furthermore, consider a subset Qnk ⊆ {1, . . . , T} for each

reflective element n and each phase shift option k, which

comprises the indices of all those random trials with the

nth phase shift chosen to be kω, i.e.,

Qnk = {t : θn(t) = kω} . (13)

We now compute the conditional sample mean of the re-

ceived signal power within the above subset:

Ê[|Y |2|θn = kω] =
1

|Qnk|
∑
t∈Qnk

|Y (t)|2. (14)

Intuitively, the conditional sample mean Ê[|Y |2|θn = kω]

quantifies the average performance of setting θn = kω, so

it is natural to choose each phase shift to maximize the

conditional sample mean, i.e.,

θn = k?nω, (15)

where

k?n = arg max
k

Ê[|Y |2|θn = kω]. (16)

Aside from the theoretical justification that the above

method guarantees a quadratic SNR boost in the number

of reflective elements, [112] further demonstrates through

field tests the practical effectiveness of the above condi-

tional sample mean algorithm.

We conclude this section by remarking the implemen-

tation of the proposed conditional sample mean method

in practice. The proposed method does not require any

assistance or collaboration from the base station side, so

it works in a plug-and-play fashion. The random sam-

pling in (9) can be performed by using one or more sensor

devices to measure the received signal quality in the vicin-

ity of the target user terminal(s). Notice that the sensors

used in our method are much simpler and cheaper than

most user terminals because they only measure the re-

ceived signal power, not even requiring the phase infor-

mation. After receiving the random sample data from the

sensors, the IRS then locally decides the passive beam-

forming vector according to (10) and (11), which, accord-

ing to the field test in [112], takes merely a few seconds

in total.

VII. Conclusions

This paper has reviewed state-of-the-art mathemat-

ical and learning based methods for performance mod-

eling and optimization of real-world wireless networks.

The current cutting-edge techniques from five differen-

t perspectives, including channel modeling, user demand

and traffic modeling, throughput modeling and predic-

tion, network parameter optimization, and IRS empow-

ered performance optimization, have been elaborated.

With the principles and properties of different methods

explained and illustrated, we hope that this paper will fa-

cilitate the suitable choice of methods for further research

on performance modeling and optimization of future wire-

less networks involving advanced techniques such as IRS.
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